Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012 (2012), Article ID 412752, 5 pages
http://dx.doi.org/10.1155/2012/412752
Research Article

Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

1Department of Ophthalmology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
2Department of Anatomy, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
3Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Sagamihara 229-0195, Japan

Received 14 September 2011; Revised 30 October 2011; Accepted 30 October 2011

Academic Editor: Edward Manche

Copyright © 2012 Shozo Sonoda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sonoda, K. Tachibana, E. Uchino et al., “Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles,” Investigative Ophthalmology and Visual Science, vol. 47, no. 2, pp. 558–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Tachibana, T. Uchida, K. Ogawa, N. Yamashita, and K. Tamura, “Induction of cell-membrane porosity by ultrasound,” Lancet, vol. 353, no. 9162, p. 1409, 1999. View at Google Scholar · View at Scopus
  3. F. Yang, N. Gu, D. Chen et al., “Experimental study on cell self-sealing during sonoporation,” Journal of Controlled Release, vol. 131, no. 3, pp. 205–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Mehier-Humbert, T. Bettinger, F. Yan, and R. H. Guy, “Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery,” Journal of Controlled Release, vol. 104, no. 1, pp. 213–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sonoda, K. Tachibana, E. Uchino et al., “Inhibition of melanoma by ultrasound-microbubble-aided drug delivery suggests membrane permeabilization,” Cancer Biology and Therapy, vol. 6, no. 8, pp. 1276–1283, 2007. View at Google Scholar · View at Scopus
  6. T. Yamashita, S. Sonoda, R. Suzuki et al., “A novel bubble liposome and ultrasound-mediated gene transfer to ocular surface: RC-1 cells in vitro and conjunctiva in vivo,” Experimental Eye Research, vol. 85, no. 6, pp. 741–748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Tsivgoulis, W. C. Culp, and A. V. Alexandrov, “Ultrasound enhanced thrombolysis in acute arterial ischemia,” Ultrasonics, vol. 48, no. 4, pp. 303–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Rubiera and A. V. Alexandrov, “Sonothrombolysis in the management of acute ischemic stroke,” American Journal of Cardiovascular Drugs, vol. 10, no. 1, pp. 5–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. R. Mahon, G. M. Nesbit, S. L. Barnwell et al., “North American clinical experience with the EKOS MicroLysUS infusion catheter for the treatment of embolic stroke,” American Journal of Neuroradiology, vol. 24, no. 3, pp. 534–538, 2003. View at Google Scholar · View at Scopus
  10. G. Y. Fujii, E. De Juan Jr., M. S. Humayun et al., “Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery,” Ophthalmology, vol. 109, no. 10, pp. 1814–1820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. I. D. Fabian and J. Moisseiev, “Sutureless vitrectomy: evolution and current practices,” British Journal of Ophthalmology, vol. 95, no. 3, pp. 318–324, 2011. View at Google Scholar
  12. R. Suzuki, T. Takizawa, Y. Negishi et al., “Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles,” Journal of Controlled Release, vol. 125, no. 2, pp. 137–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Suzuki, T. Takizawa, Y. Negishi, N. Utoguchi, and K. Maruyama, “Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology,” International Journal of Pharmaceutics, vol. 354, no. 1-2, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Ueno, S. Sonoda, R. Suzuki et al., “Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth,” Cancer Biology & Therapy, vol. 12, no. 4, pp. 270–277, 2011. View at Google Scholar
  15. R. Suzuki, T. Takizawa, Y. Negishi et al., “Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound,” Journal of Controlled Release, vol. 117, no. 1, pp. 130–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. R. Mayer, N. A. Geis, H. A. Katus, and R. Bekeredjian, “Ultrasound targeted microbubble destruction for drug and gene delivery,” Expert Opinion on Drug Delivery, vol. 5, no. 10, pp. 1121–1138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. J. Rizzolo, “Development and role of tight junctions in the retinal pigment epithelium,” International Review of Cytology, vol. 258, pp. 195–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Harrington, M. Mubashar, and A. M. Peters, “Polyethylene glycol in the design of tumor-targetting radiolabelled macromolecules—lessons from liposomes and monoclonal antibodies,” Quarterly Journal of Nuclear Medicine, vol. 46, no. 3, pp. 171–180, 2002. View at Google Scholar · View at Scopus
  19. E. B. Souto, S. Doktorovova, E. Gonzalez-Mira, M. A. Egea, and M. L. Garcia, “Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs,” Current Eye Research, vol. 35, no. 7, pp. 537–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Suzuki, T. Takizawa, Y. Negishi, N. Utoguchi, and K. Maruyama, “Effective gene delivery with liposomal bubbles and ultrasound as novel non-viral system,” Journal of Drug Targeting, vol. 15, no. 7-8, pp. 531–537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Hisatomi, T. Nakazawa, K. Noda et al., “HIV protease inhibitors provide neuroprotection through inhibition of mitochondrial apoptosis in mice,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2025–2038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Sun, X. Xu, F. Wang et al., “Effects of nerve growth factor for retinal cell survival in experimental retinal detachment,” Current Eye Research, vol. 32, no. 9, pp. 765–772, 2007. View at Publisher · View at Google Scholar · View at Scopus