Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012, Article ID 876472, 7 pages
http://dx.doi.org/10.1155/2012/876472
Review Article

Spectral Domain Optical Coherence Tomography in the Diagnosis and Management of Vitreoretinal Interface Pathologies

Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Kentucky Lions Eye Institute, 301 East Muhammad Ali Boulevard, Louisville, KY 40202, USA

Received 3 February 2012; Revised 19 March 2012; Accepted 5 April 2012

Academic Editor: Stacey S. Choi

Copyright © 2012 Yoreh Barak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Sebag, “Anatomy and pathology of the vitreo-retinal interface,” Eye, vol. 6, no. 6, pp. 541–552, 1992. View at Google Scholar · View at Scopus
  2. M. W. Johnson, “Perifoveal vitreous detachment and its macular complications,” Transactions of the American Ophthalmological Society, vol. 103, pp. 537–567, 2005. View at Google Scholar · View at Scopus
  3. T. L. Ponsioen, J. M. M. Hooymans, and L. I. Los, “Remodelling of the human vitreous and vitreoretinal interface—a dynamic process,” Progress in Retinal and Eye Research, vol. 29, no. 6, pp. 580–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Johnson, “Posterior vitreous detachment: evolution and complications of its early stages,” American Journal of Ophthalmology, vol. 149, no. 3, pp. 371–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Puliafito, M. R. Hee, C. P. Lin et al., “Imaging of macular diseases with optical coherence tomography,” Ophthalmology, vol. 102, no. 2, pp. 217–229, 1995. View at Google Scholar · View at Scopus
  6. G. J. Jaffe and J. Caprioli, “Optical coherence tomography to detect and manage retinal disease and glaucoma,” American Journal of Ophthalmology, vol. 137, no. 1, pp. 156–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. F. Kiernan, W. F. Mieler, and S. M. Hariprasad, “Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems,” American Journal of Ophthalmology, vol. 149, no. 1, pp. 18–e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Foos and N. C. Wheeler, “Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment,” Ophthalmology, vol. 89, no. 12, pp. 1502–1512, 1982. View at Google Scholar · View at Scopus
  9. M. A. Novak and R. B. Welch, “Complications of acute symptomatic posterior vitreous detachment,” American Journal of Ophthalmology, vol. 97, no. 3, pp. 308–314, 1984. View at Google Scholar · View at Scopus
  10. N. Kicova, T. Bertelmann, S. Irle, W. Sekundo, and S. Mennel, “Evaluation of a posterior vitreous detachment: a comparison of biomicroscopy, B-scan ultrasonography and optical coherence tomography to surgical findings with chromodissection,” Acta Ophthalmol, vol. 90, no. 4, pp. e264–e268, 2012. View at Publisher · View at Google Scholar
  11. M. Lorusso, L. M. Ferrari, M. Leozappa, A. P. Modoni, and T. M. Ferrari, “Transient vitreomacular traction syndrome caused by traumatic incomplete posterior vitreous detachment,” European Journal of Ophthalmology, vol. 21, no. 5, pp. 668–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. S. Tan, M. Mura, S. Y. Lesnik Oberstein, and H. M. Bijl, “Safety of vitrectomy for floaters,” American Journal of Ophthalmology, vol. 151, no. 6, pp. 995–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Mura, L. A. Engelbrecht, M. D. de Smet et al., “Surgery for floaters,” Ophthalmology, vol. 118, p. 1894, 2011. View at Google Scholar
  14. H. Koizumi, R. F. Spaide, Y. L. Fisher, K. B. Freund, J. M. Klancnik, and L. A. Yannuzzi, “Three-Dimensional Evaluation of Vitreomacular Traction and Epiretinal Membrane Using Spectral-Domain Optical Coherence Tomography,” American Journal of Ophthalmology, vol. 145, no. 3, pp. 509–e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sonmez, A. Capone Jr, M. T. Trese, and G. A. Williams, “Vitreomacular traction syndrome: impact of anatomical configuration on anatomical and visual outcomes,” Retina, vol. 28, no. 9, pp. 1207–1214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Wolf and U. Wolf-Schnurrbusch, “Spectral-domain optical coherence tomography use in macular diseases: a review,” Ophthalmologica, vol. 224, no. 6, pp. 333–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. F. P. Nasrallah, A. E. Jalkh, F. Van Coppenolle et al., “The role of the vitreous in diabetic macular edema,” Ophthalmology, vol. 95, no. 10, pp. 1335–1339, 1988. View at Google Scholar · View at Scopus
  18. M. W. Johnson, “Etiology and Treatment of Macular Edema,” American Journal of Ophthalmology, vol. 147, no. 1, pp. 11–e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ophir and M. R. Martinez, “Epiretinal membranes and incomplete posterior vitreous detachment in diabetic macular edema, detected by spectral-domain optical coherence tomography,” Investigative Ophthalmology & Visual Science, vol. 52, pp. 6414–6420, 2011. View at Google Scholar
  20. A. Gandorfer, M. Rohleder, S. Grosselfinger, C. Haritoglou, M. Ulbig, and A. Kampik, “Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction,” American Journal of Ophthalmology, vol. 139, no. 4, pp. 638–652, 2005. View at Google Scholar · View at Scopus
  21. D. J. Sulkes, M. S. Ip, C. R. Baumal, H. K. Wu, and C. A. Puliafito, “Spontaneous resolution of vitreomacular traction documented by optical coherence tomography,” Archives of Ophthalmology, vol. 118, no. 2, pp. 286–287, 2000. View at Google Scholar · View at Scopus
  22. I. Voo, E. C. Mavrofrides, and C. A. Puliafito, “Clinical applications of optical coherence tomography for the diagnosis and management of macular diseases,” Ophthalmology Clinics of North America, vol. 17, no. 1, pp. 21–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Y. Fujii, E. De Juan Jr, M. S. Humayun et al., “A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery,” Ophthalmology, vol. 109, no. 10, pp. 1807–1812, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Sandali, M. El Sanharawi, N. Lecuen et al., “25-, 23-, and 20-gauge vitrectomy in epiretinal membrane surgery: a comparative study of 553 cases,” Graefe's Archive for Clinical and Experimental Ophthalmology, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. H. Sonoda, T. Sakamoto, H. Enaida et al., “Residual vitreous cortex after surgical posterior vitreous separation visualized by intravitreous triamcinolone acetonide,” Ophthalmology, vol. 111, no. 2, pp. 226–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Sebag, P. Gupta, R. R. Rosen, P. Garcia, and A. A. Sadun, “Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy,” Transactions of the American Ophthalmological Society, vol. 105, pp. 121–129, 2007. View at Google Scholar · View at Scopus
  27. E. W. Schneider and M. W. Johnson, “Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review,” Clinical Ophthalmology, vol. 5, no. 1, pp. 1151–1165, 2011. View at Google Scholar
  28. L. C. Moorhead and N. Radtke, “Enzyme-assisted vitrectomy with bacterial collagenase: pilot human studies,” Retina, vol. 5, no. 2, pp. 98–100, 1985. View at Google Scholar · View at Scopus
  29. T. H. Tezel, L. V. Del Priore, and H. J. Kaplan, “Posterior vitreous detachment with dispase,” Retina, vol. 18, no. 1, pp. 7–15, 1998. View at Google Scholar · View at Scopus
  30. M. D. de Smet, A. Gandorfer, P. Stalmans et al., “Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy. The MIVI I trial,” Ophthalmology, vol. 116, no. 7, pp. 1349–1355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Sebag, “Pharmacologic vitreolysis—premise and promise of the first decade,” Retina, vol. 29, no. 7, pp. 871–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Niwa, H. Terasaki, Y. Ito, and Y. Miyake, “Macular hole development in fellow eyes of patients with unilateral macular hole,” American Journal of Ophthalmology, vol. 140, no. 3, pp. 370–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Barak, M. P. Sherman, and S. Schaal, “Mathematical analysis of specific anatomic foveal configurations predisposing to the formation of macular holes.,” Investigative Ophthalmology & Visual Science, vol. 52, no. 11, pp. 8266–8270, 2011. View at Google Scholar
  34. Z. Michalewska, J. Michalewski, B. L. Sikorski et al., “A study of macular hole formation by serial spectral optical coherence tomography,” Clinical and Experimental Ophthalmology, vol. 37, no. 4, pp. 373–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. N. E. Kelly and R. T. Wendel, “Vitreous surgery for idiopathic macular holes: results of a pilot study,” Archives of Ophthalmology, vol. 109, no. 5, pp. 654–659, 1991. View at Google Scholar · View at Scopus
  36. S. Schaal and C. C. Barr, “Management of macular holes: a comparison of 1-year outcomes of 3 surgical techniques,” Retina, vol. 29, no. 8, pp. 1091–1096, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Lange, L. Membrey, N. Ahmad et al., Pilot Randomised Controlled Trial of Face-down Positioning Following Macular Hole Surgery, Eye, London, UK, 2011.
  38. A. Tatham and S. Banerjee, “Face-down posturing after macular hole surgery: a meta-analysis,” British Journal of Ophthalmology, vol. 94, no. 5, pp. 626–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. K. Chang, H. Koizumi, and R. F. Spaide, “Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes,” Retina, vol. 28, no. 7, pp. 969–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Inoue, Y. Watanabe, A. Arakawa, S. Sato, S. Kobayashi, and K. Kadonosono, “Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 3, pp. 325–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kishi and K. Shimizu, “Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis,” American Journal of Ophthalmology, vol. 118, no. 4, pp. 451–456, 1994. View at Google Scholar · View at Scopus
  42. R. G. Schumann, M. M. Schaumberger, M. Rohleder, C. Haritoglou, A. Kampik, and A. Gandorfer, “Ultrastructure of the vitreomacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases,” American Journal of Ophthalmology, vol. 141, no. 6, pp. 1112–e1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. G. Mirza, M. W. Johnson, and L. M. Jampol, “Optical coherence tomography use in evaluation of the vitreoretinal interface: a review,” Survey of Ophthalmology, vol. 52, no. 4, pp. 397–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. J. G. Wong, N. Sachdev, P. E. Beaumont, and A. A. Chang, “Visual outcomes following vitrectomy and peeling of epiretinal membrane,” Clinical and Experimental Ophthalmology, vol. 33, no. 4, pp. 373–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Ray, D. E. Baraano, J. A. Fortun et al., “Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery,” Ophthalmology, vol. 118, no. 11, pp. 2212–2217, 2011. View at Publisher · View at Google Scholar
  46. M. Alkabes, C. Salinas, L. Vitale, A. Bures-Jelstrup, P. Nucci, and C. Mateo, “En face optical coherence tomography of inner retinal defects after internal limiting membrane peeling for idiopathic macular hole,” Investigative Ophthalmology & Visual Science, vol. 52, no. 11, pp. 8349–8355, 2011. View at Google Scholar
  47. B. Baumann, B. Potsaid, M. F. Kraus et al., “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomedical Optics Express, vol. 2, no. 6, pp. 1539–1552, 2011. View at Publisher · View at Google Scholar
  48. T. Tezel, S. Schaal, E. Downing, A. Soliman, A. El-Baz, and H. Kaplan, Vitrectomy with Posterior Hyaloid Peeling Increases Optic Nerve and Retinal Perfusion, Retina Congress, New York, NY, USA, 2009.