Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2013, Article ID 676049, 9 pages
http://dx.doi.org/10.1155/2013/676049
Research Article

Predictors of Visual Response to Intravitreal Bevacizumab for Treatment of Neovascular Age-Related Macular Degeneration

1Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
2Department of Ophthalmology, Peking University People’s Hospital, Beijing 100044, China
3Key Laboratory of Vision Loss & Restoration, Ministry of Education, Beijing 100044, China
4Institute of Immunoprophylaxis, Beijing Centers of Disease Control & Prevention, Beijing 100013, China

Received 20 June 2013; Accepted 22 July 2013

Academic Editor: Alfredo García-Layana

Copyright © 2013 Kai Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Congdon, B. O'Colmain, C. C. Klaver et al., “Causes and prevalence of visual impairment among adults in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 477–485, 2004. View at Google Scholar
  2. D. Pascolini, S. P. Mariotti, G. P. Pokharel et al., “2002 Global update of available data on visual impairment: a compilation of population-based prevalence studies,” Ophthalmic Epidemiology, vol. 11, no. 2, pp. 67–115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. F. L. Ferris III, S. L. Fine, and L. Hyman, “Age-related macular degeneration and blindness due to neovascular maculopathy,” Archives of Ophthalmology, vol. 102, no. 11, pp. 1640–1642, 1984. View at Google Scholar · View at Scopus
  4. J. A. Wells, R. Murthy, R. Chibber et al., “Levels of vascular endothelial growth factor are elevated in the vitreous of patients with subretinal neovascularisation,” British Journal of Ophthalmology, vol. 80, no. 4, pp. 363–366, 1996. View at Google Scholar · View at Scopus
  5. F. Wang, K. G. Rendahl, W. C. Manning, D. Quiroz, M. Coyne, and S. S. Miller, “AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat,” Investigative Ophthalmology and Visual Science, vol. 44, no. 2, pp. 781–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Hera, M. Keramidas, M. Peoc'h, M. Mouillon, J.-P. Romanet, and J.-J. Feige, “Expression of VEGF and angiopoietins in subfoveal membranes from patients with age-related macular degeneration,” American Journal of Ophthalmology, vol. 139, no. 4, pp. 589–596, 2005. View at Google Scholar · View at Scopus
  7. K. Spilsbury, K. L. Garrett, W.-Y. Shen, I. J. Constable, and P. E. Rakoczy, “Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization,” American Journal of Pathology, vol. 157, no. 1, pp. 135–144, 2000. View at Google Scholar · View at Scopus
  8. D. M. Brown, M. Michels, P. K. Kaiser, J. S. Heier, J. P. Sy, and T. Ianchulev, “Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study,” Ophthalmology, vol. 116, no. 1, pp. 57–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Abraham, H. Yue, and L. Wilson, “Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 2,” American Journal of Ophthalmology, vol. 150, no. 3, pp. 315–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Schmidt-Erfurth, B. Eldem, R. Guymer et al., “Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study,” Ophthalmology, vol. 118, no. 5, pp. 831–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Gaudreault, D. Fei, J. Rusit, P. Suboc, and V. Shiu, “Preclinical pharmacokinetics of ranibizumab (rhuFabV2) after a single intravitreal administration,” Investigative Ophthalmology and Visual Science, vol. 46, no. 2, pp. 726–733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Bakri, M. R. Snyder, J. M. Reid, J. S. Pulido, M. K. Ezzat, and R. J. Singh, “Pharmacokinetics of intravitreal ranibizumab (Lucentis),” Ophthalmology, vol. 114, no. 12, pp. 2179–2182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. F. Martin, M. G. Maguire, G.-S. Ying, J. E. Grunwald, S. L. Fine, and G. J. Jaffe, “Ranibizumab and bevacizumab for neovascular age-related macular degeneration,” The New England Journal of Medicine, vol. 364, no. 20, pp. 1897–1908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Avery, D. J. Pieramici, M. D. Rabena, A. A. Castellarin, M. A. Nasir, and M. J. Giust, “Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration,” Ophthalmology, vol. 113, no. 3, pp. 363–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Aisenbrey, F. Ziemssen, M. Völker et al., “Intravitreal bevacizumab (Avastin) for occult choroidal neovascularization in age-related macular degeneration,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 7, pp. 941–948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. F. Bashshur, Z. A. Haddad, A. Schakal, R. F. Jaafar, M. Saab, and B. N. Noureddin, “Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: a one-year prospective study,” American Journal of Ophthalmology, vol. 145, no. 2, pp. 249–e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. F. Bashshur, Z. A. Haddad, A. R. Schakal, R. F. Jaafar, A. Saad, and B. N. Noureddin, “Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: the second year of a prospective study,” American Journal of Ophthalmology, vol. 148, no. 1, pp. 59–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Li, Y. Hu, X. Sun, J. Zhang, and M. Zhang, “Bevacizumab for neovascular age-related macular degeneration in China,” Ophthalmology, vol. 119, no. 10, pp. 2087–2093, 2012. View at Google Scholar
  19. D. S. Boyer, A. N. Antoszyk, C. C. Awh, R. B. Bhisitkul, H. Shapiro, and N. R. Acharya, “Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration,” Ophthalmology, vol. 114, no. 2, pp. 246–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. K. Kaiser, D. M. Brown, K. Zhang et al., “Ranibizumab for predominantly classic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results,” American Journal of Ophthalmology, vol. 144, no. 6, pp. 850–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. S. Ying, J. Huang, M. G. Maguire et al., “Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration,” Ophthalmology, vol. 120, no. 1, pp. 122–129, 2013. View at Google Scholar
  22. M. A. Brantley Jr., A. M. Fang, J. M. King, A. Tewari, S. M. Kymes, and A. Shiels, “Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab,” Ophthalmology, vol. 114, no. 12, pp. 2168–2173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Imai, K. Mori, K. Horie-Inoue et al., “CFH, VEGF, and PEDF genotypes and the response to intravitreous injection of bevacizumab for the treatment of age-related macular degeneration,” Journal of Ocular Biology, Diseases, and Informatics, vol. 3, no. 2, pp. 53–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Tian, X. Qin, K. Fang et al., “Association of genetic polymorphisms with response to bevacizumab for neovascular age-related macular degeneration in the Chinese population,” Pharmacogenomics, vol. 13, no. 7, pp. 779–787, 2012. View at Google Scholar
  25. W. Smith, J. Assink, R. Klein et al., “Risk factors for age-related macular degeneration: pooled findings from three continents,” Ophthalmology, vol. 108, no. 4, pp. 697–704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. T. E. Clemons, R. C. Milton, R. Klein, J. M. Seddon, and F. L. Ferris III, “Risk factors for the incidence of advanced age-related macular degeneration in the Age-Related Eye Disease Study (AREDS): AREDS report no. 19,” Ophthalmology, vol. 112, no. 4, pp. 533–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Khan, D. A. Thurlby, H. Shahid et al., “Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation,” British Journal of Ophthalmology, vol. 90, no. 1, pp. 75–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Teper, A. Nowinska, J. Pilat, A. Palucha, and E. Wylegala, “Involvement of genetic factors in the response to a variable-dosing ranibizumab treatment regimen for age-related macular degeneration,” Molecular Vision, vol. 16, pp. 2598–2604, 2010. View at Google Scholar · View at Scopus
  29. A. Orlin, D. Hadley, W. Chang et al., “Association between high-risk disease loci and response to anti-vascular endothelial growth factor treatment for wet age-related macular degeneration,” Retina, vol. 32, no. 1, pp. 4–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Yamashiro, K. Tomita, A. Tsujikawa et al., “Factors associated with the response of age-related macular degeneration to intravitreal ranibizumab treatment,” American Journal of Ophthalmology, vol. 154, no. 1, pp. 125–136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Kloeckener-Gruissem, D. Barthelmes, S. Labs et al., “Genetic association with response to intravitreal ranibizumab in patients with neovascular AMD,” Investigative ophthalmology & Visual Science, vol. 52, no. 7, pp. 4694–4702, 2011. View at Google Scholar · View at Scopus
  32. M. McKibbin, M. Ali, S. Bansal et al., “CFH, VEGF and HTRA1 promoter genotype may influence the response to intravitreal ranibizumab therapy for neovascular age-related macular degeneration,” British Journal of Ophthalmology, vol. 96, no. 2, pp. 208–212, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. B. S. Conklin, W. Zhao, D.-S. Zhong, and C. Chen, “Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells,” American Journal of Pathology, vol. 160, no. 2, pp. 413–418, 2002. View at Google Scholar · View at Scopus
  34. M. Pons and M. E. Marin-Castaño, “Nicotine increases the VEGF/PEDF ratio in retinal pigment epithelium: a possible mechanism for CNV in passive smokers with AMD,” Investigative Ophthalmology & Visual Science, vol. 52, no. 6, pp. 3842–3853, 2011. View at Google Scholar · View at Scopus
  35. M. Fujihara, N. Nagai, T. E. Sussan, S. Biswal, and J. T. Handa, “Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice,” PLoS One, vol. 3, no. 9, Article ID e3119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. M. Bertram, C. J. Baglole, R. P. Phipps, and R. T. Libby, “Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration,” American Journal of Physiology. Cell Physiology, vol. 297, no. 5, pp. C1200–C1210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Pons and M. E. Marin-Castaño, “Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo,” PLoS One, vol. 6, no. 2, Article ID e16722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Takeuchi, M. Takeuchi, K. Oikawa et al., “Effects of dioxin on vascular endothelial growth factor (VEGF) production in the retina associated with choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3410–3416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Solberg, M. Rosner, and M. Belkin, “The association betwen cigarette smoking and ocular diseases,” Survey of Ophthalmology, vol. 42, no. 6, pp. 535–547, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Lutty, J. Grunwald, A. B. Majji, M. Uyama, and S. Yoneya, “Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration,” Molecular Vision, vol. 5, no. article 35, 1999. View at Google Scholar · View at Scopus
  41. B. R. Hammond Jr., B. R. Wooten, and D. M. Snodderly, “Cigarette smoking and retinal carotenoids: implications for age-related macular degeneration,” Vision Research, vol. 36, no. 18, pp. 3003–3009, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. B. R. Hammond Jr. and M. Caruso-Avery, “Macular pigment optical density in a southwestern sample,” Investigative Ophthalmology and Visual Science, vol. 41, no. 6, pp. 1492–1497, 2000. View at Google Scholar · View at Scopus