Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2013 (2013), Article ID 789129, 7 pages
http://dx.doi.org/10.1155/2013/789129
Clinical Study

Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT

1Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
2Department of Engineering, University of São Paulo (USP), São Paulo, SP, Brazil

Received 29 August 2013; Accepted 13 October 2013

Academic Editor: David A. Wilkie

Copyright © 2013 Kleyton Arlindo Barella et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. N. Weinreb and P. Tee Khaw, “Primary open-angle glaucoma,” The Lancet, vol. 363, no. 9422, pp. 1711–1720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. H. A. Quigley, G. R. Dunkelberger, and W. R. Green, “Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma,” American Journal of Ophthalmology, vol. 107, no. 5, pp. 453–564, 1989. View at Google Scholar · View at Scopus
  3. H. A. Quigley, J. Katz, R. J. Derick, D. Gilbert, and A. Sommer, “An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage,” Ophthalmology, vol. 99, no. 1, pp. 19–28, 1992. View at Google Scholar · View at Scopus
  4. B. S. Pooja-Sharma, P. A. Sample, L. M. Zangwill, and J. S. Schuman, “Diagnostic tools for glaucoma detection and management,” Survey of Ophthalmology, vol. 53, no. 6, pp. S17–S32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar · View at Scopus
  6. K. R. Sung, J. H. Na, and Y. Lee, “Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography,” Journal of Glaucoma, vol. 21, no. 7, pp. 498–504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Cirrus HD-OCT, “Details define your decisions,” Carl Zeiss Meditec, Dublin, Calif, USA, CIR., 1595 DS-Nr. 0-1487-872.
  8. I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective,” Artificial Intelligence in Medicine, vol. 23, no. 1, pp. 89–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Goldbaum, N. P. Katz, M. R. Nelson, and L. R. Haff, “The discrimination of similarly colored objects in computer images of the ocular fundus,” Investigative Ophthalmology and Visual Science, vol. 31, no. 4, pp. 617–623, 1990. View at Google Scholar · View at Scopus
  10. D. Bizios, A. Heijl, and B. Bengtsson, “Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms,” Journal of Glaucoma, vol. 16, no. 1, pp. 20–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Burgansky-Eliash, G. Wollstein, T. Chu et al., “Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study,” Investigative Ophthalmology and Visual Science, vol. 46, no. 11, pp. 4147–4152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Boden, K. Chan, P. A. Sample et al., “Assessing visual field clustering schemes using machine learning classifiers in standard perimetry,” Investigative Ophthalmology and Visual Science, vol. 48, no. 12, pp. 5582–5590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Tucker, V. Vinciotti, X. Liu, and D. Garway-Heath, “A spatio-temporal Bayesian network classifier for understanding visual field deterioration,” Artificial Intelligence in Medicine, vol. 34, no. 2, pp. 163–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Bowd, F. A. Medeiros, Z. Zhang et al., “Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1322–1329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bizios, A. Heijl, J. L. Hougaard, and B. Bengtsson, “Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT,” Acta Ophthalmologica, vol. 88, no. 1, pp. 44–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Townsend, G. Wollstein, D. Danks et al., “Heidelberg Retina Tomograph 3 machine learning classifiers for glaucoma detection,” British Journal of Ophthalmology, vol. 92, no. 6, pp. 814–818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Bowd, J. Hao, I. M. Tavares et al., “Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes,” Investigative Ophthalmology and Visual Science, vol. 49, no. 3, pp. 945–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Y. Mardin, A. Peters, F. Horn, A. G. Jünemann, and B. Lausen, “Improving glaucoma diagnosis by the combination of perimetry and HRT measurements,” Journal of Glaucoma, vol. 15, no. 4, pp. 299–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M.-L. Huang and H.-Y. Chen, “Development and comparison of automated classifiers for glaucoma diagnosis using stratus optical coherence tomography,” Investigative Ophthalmology and Visual Science, vol. 46, no. 11, pp. 4121–4129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. F. K. Horn, R. Lämmer, C. Y. Mardin et al., “Combined evaluation of frequency doubling technology perimetry and scanning laser ophthalmoscopy for glaucoma detection using automated classification,” Journal of Glaucoma, vol. 21, no. 1, pp. 27–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. V. G. Vidotti, V. P. Costa, F. R. Silva et al., “Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma,” European Journal of Ophthalmology, 2012. View at Publisher · View at Google Scholar
  22. F. R. Silva, V. G. Vidotti, F. Cremasco, M. Dias, E. S. Gomi, and V. P. Costa, “Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry,” Arquivos Brasileiros De Oftalmologia, vol. 76, no. 3, pp. 170–174.
  23. L. T. Chylack Jr., J. K. Wolfe, D. M. Singer et al., “The lens opacities classification system III,” Archives of Ophthalmology, vol. 111, no. 6, pp. 831–836, 1993. View at Google Scholar · View at Scopus
  24. P. Naithani, R. Sihota, P. Sony et al., “Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3138–3145, 2007. View at Publisher · View at Google Scholar · View at Scopus