Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2014 (2014), Article ID 178132, 7 pages
http://dx.doi.org/10.1155/2014/178132
Clinical Study

Treatment of Corneal Neovascularization Using Anti-VEGF Bevacizumab

Ophthalmology Department, 3rd Medical Faculty of Charles University and University Hospital Kralovske Vinohrady, Srobarova 50, 10034 Prague, Czech Republic

Received 14 December 2013; Revised 18 February 2014; Accepted 19 February 2014; Published 23 March 2014

Academic Editor: Francisco Javier Romero

Copyright © 2014 Deli Krizova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Arnold, “Experimentelle Untersuchungen uber die Entwicklung,” Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, vol. 54, pp. 1–30, 1872. View at Google Scholar
  2. D. T. Azar, “Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American ophthalmological society thesis),” Transactions of the American Ophthalmological Society, vol. 104, pp. 264–302, 2006. View at Google Scholar · View at Scopus
  3. J. Chang, E. E. Gabison, T. Kato, and D. T. Azar, “Corneal neovascularization,” Current Opinion in Ophthalmology, vol. 12, no. 4, pp. 242–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. K. Ambati, E. Patterson, P. Jani et al., “Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier,” The British Journal of Ophthalmology, vol. 91, no. 4, pp. 505–508, 2007. View at Google Scholar
  5. F. Bock, J. Onderka, T. Dietrich, B. Bachmann, B. Pytowski, and C. Cursiefen, “Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 1, pp. 115–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Cursiefen, “Immune privilege and angiogenic privilege of the cornea,” Chemical Immunology and Allergy, vol. 92, pp. 50–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Cursiefen and F. Kruse, “New aspects of angiogenesis in the cornea,” in Essentials in Ophthalmology, pp. 83–99, 2006. View at Google Scholar
  8. Y. Qazi, S. Maddula, and B. K. Ambati, “Mediators of ocular angiogenesis,” Journal of Genetics, vol. 88, no. 4, pp. 495–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Cursiefen, L. Chen, M. Saint-Geniez et al., “Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11405–11410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Ellenberg, D. T. Azar, J. A. Hallak et al., “Novel aspects of corneal angiogenic and lymphangiogenic privilege,” Progress in Retinal and Eye Research, vol. 29, no. 3, pp. 208–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. K. Ambati, M. Nozaki, N. Singh et al., “Corneal avascularity is due to soluble VEGF receptor-1,” Nature, vol. 443, no. 7114, pp. 993–997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Folkman, “History of angiogenesis,” in Angiogenesis: An Integrative Approach from Science to Medicine, W. D. Figg and J. Folkman, Eds., pp. 1–14, Springer, New York, NY, USA, 2008. View at Google Scholar
  13. J. H. Chang, N. K. Garg, E. Lunde, K. Y. Han, S. Jain, and D. T. Azar, “Corneal neovascularization: an anti-VEGF therapy review,” Survey of Ophthalmology, vol. 57, no. 5, pp. 415–429, 2012. View at Publisher · View at Google Scholar
  14. S. Cheng, M. H. Dastjerdi, G. Ferrari et al., “Short-term topical bevacizumab in the treatment of stable corneal neovascularization,” The American Journal of Ophthalmology, vol. 154, no. 6, pp. 940–958, 2012. View at Publisher · View at Google Scholar
  15. R. F. Spaide, K. Laud, H. F. Fine et al., “Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration,” Retina, vol. 26, no. 4, pp. 383–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Bock, J. Onderka, T. Dietrich et al., “Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis,” Investigative Ophthalmology and Visual Science, vol. 48, no. 6, pp. 2545–2552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Papathanassious, S. Theodoropoulou, A. Analitis, A. Tzonou, and P. G. Theodossiadis, “Vascular endothelial growth factor inhibitors for treatment of corneal neovascularization: a meta-analysis,” Cornea, vol. 32, no. 4, pp. 435–444, 2013. View at Publisher · View at Google Scholar
  18. P. P. Doctor, P. V. Bhat, and C. S. Foster, “Subconjunctival bevacizumab for corneal neovascularization,” Cornea, vol. 27, no. 9, pp. 992–995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Gerten, “Bevacizumab (avastin) and argon laser to treat neovascularization in corneal transplant surgery,” Cornea, vol. 27, no. 10, pp. 1195–1199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Bock, Y. König, F. Kruse, M. Baier, and C. Cursiefen, “Bevacizumab (avastin) eye drops inhibit corneal neovascularization,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 2, pp. 281–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Jae, K. Dong, K. Eun-Soon, J. K. Myoung, and T. Hungwon, “Topically administered bevacizumab had longer standing anti-angiogenic effect than subconjunctivally injected bevacizumab in rat corneal neovascularization,” International Journal of Ophthalmology, vol. 6, no. 5, pp. 588–591, 2013. View at Google Scholar
  22. S. W. Kim, B. J. Ha, E. K. Kim, H. Tchah, and T. I. Kim, “The effect of topical bevacizumab on corneal neovascularization,” Ophthalmology, vol. 115, no. 6, pp. e33–e38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. C. Wu, H. K. Kuo, M. H. Tai, and S. J. Shin, “Topical bevacizumab eyedrops for limbal-conjunctival neovascularization in impending recurrent pterygium,” Cornea, vol. 28, no. 1, pp. 103–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Carrasco, “Subconjunctival bevacizumab for corneal neovascularization in herpetic stromal keratitis,” Cornea, vol. 27, no. 6, pp. 743–745, 2008. View at Google Scholar · View at Scopus
  25. M. Zheng, S. Deshpande, S. Lee, N. Ferrara, and B. T. Rouse, “Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis,” Journal of Virology, vol. 75, no. 20, pp. 9828–9835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Jin, M. Guan, J. Sima et al., “Decreased pigment epithelium-derived factor and increased vascular endothelial growth factor levels in pterygia,” Cornea, vol. 22, no. 5, pp. 473–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Uy, P. S. Chan, and R. E. Ang, “Topical bevacizumab and ocular surface neovascularization in patients with Stevens-Johnson syndrome,” Cornea, vol. 27, no. 1, pp. 70–73, 2008. View at Google Scholar · View at Scopus
  28. I. Bahar, I. Kaiserman, P. McAllum, D. Rootman, and A. Slomovic, “Subconjunctival bevacizumab injection for corneal neovascularization in recurrent pterygium,” Current Eye Research, vol. 33, no. 1, pp. 23–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. E. MacKenzie, W. R. Tucker, and T. R. G. Poole, “Bevacizumab (avastin) for corneal neovascularization-corneal light shield soaked application,” Cornea, vol. 28, no. 2, pp. 246–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Yoeruek, F. Ziemssen, S. Henke-Fahle et al., “Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn,” Acta Ophthalmologica, vol. 86, no. 3, pp. 322–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Q. Yu, M. Zhang, K. I. Matis, C. Kim, and M. I. Rosenblatt, “Vascular endothelial growth factor mediates corneal nerve repair,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 3870–3878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Jo, C. Mailhos, M. Ju et al., “Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization,” The American Journal of Pathology, vol. 168, no. 6, pp. 2036–2053, 2006. View at Publisher · View at Google Scholar · View at Scopus