Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2014, Article ID 705783, 15 pages
http://dx.doi.org/10.1155/2014/705783
Review Article

The Role of Microglia in Diabetic Retinopathy

1Vision Health Specialties, 4109 N. Midland Drive, Midland, TX 79707, USA
2Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
3College of Optometry, University of Houston, Houston, TX 77204, USA
4Department of Biology, The University of Texas of the Permian Basin, Odessa, TX 79762, USA

Received 24 February 2014; Revised 8 July 2014; Accepted 31 July 2014; Published 31 August 2014

Academic Editor: Wai T. Wong

Copyright © 2014 Jeffery G. Grigsby et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Bresnick, “Diabetic retinopathy viewed as a neurosensory disorder,” Archives of ophthalmology, vol. 104, no. 7, pp. 989–990, 1986. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Rungger-Brändle, A. A. Dosso, and P. M. Leuenberger, “Glial reactivity, an early feature of diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 41, no. 7, pp. 1971–1980, 2000. View at Google Scholar · View at Scopus
  3. H. P. Hammes, H. J. Federoff, and M. Brownlee, “Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes,” Molecular Medicine, vol. 1, no. 5, pp. 527–534, 1995. View at Google Scholar · View at Scopus
  4. A. J. Barber, E. Lieth, S. A. Khin, D. A. Antonetti, A. G. Buchanan, and T. W. Gardner, “Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin,” Journal of Clinical Investigation, vol. 102, no. 4, pp. 783–791, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Lieth, T. W. Gardner, A. J. Barber, and D. A. Antonetti, “Retinal neurodegeneration: early pathology in diabetes,” Clinical & Experimental Ophthalmology, vol. 28, no. 1, pp. 3–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zeng, Y. Ng, and E. Ling, “Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats,” Visual Neuroscience, vol. 17, no. 3, pp. 463–471, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. S. di Leo, S. Caputo, B. Falsini et al., “Nonselective loss of contrast sensitivity in visual system testing in early type I diabetes,” Diabetes Care, vol. 15, no. 5, pp. 620–625, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Dosso, E. R. Bonvin, Y. Morel, A. Golay, J. P. Assal, and P. M. Leuenberger, “Risk factors associated with contrast sensitivity loss in diabetic patients,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 234, no. 5, pp. 300–305, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Harris, O. Arend, R. P. Danis, D. Evans, S. Wolf, and B. J. Martin, “Hyperoxia improves contrast sensitivity in early diabetic retinopathy,” British Journal of Ophthalmology, vol. 80, no. 3, pp. 209–213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Chen, P. Yang, and A. Kijlstra, “Distribution, markers, and functions of retinal microglia,” Ocular Immunology and Inflammation, vol. 10, no. 1, pp. 27–39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Santos, R. Calvente, M. Tassi et al., “Embryonic and postnatal development of microglial cells in the mouse retina,” The Journal of Comparative Neurology, vol. 506, no. 2, pp. 224–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Cuadros and J. Navascués, “The origin and differentiation of microglial cells during development,” Progress in Neurobiology, vol. 56, no. 2, pp. 173–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. P. E. Tan, P. K. Yu, C. Balaratnasingam et al., “Quantitative confocal imaging of the retinal microvasculature in the human retina,” Investigative Ophthalmology and Visual Science, vol. 53, no. 9, pp. 5728–5736, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. U. K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Giaume, F. Kirchhoff, C. Matute, A. Reichenbach, and A. Verkhratsky, “Glia: the fulcrum of brain diseases,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1324–1335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Hughes, “Microglia: The constant gardeners,” Nature, vol. 485, no. 7400, pp. 570–572, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. B. R. Tambuyzer, P. Ponsaerts, and E. J. Nouwen, “Microglia: gatekeepers of central nervous system immunology,” Journal of Leukocyte Biology, vol. 85, no. 3, pp. 352–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Raivich, M. Bohatschek, C. U. A. Kloss, A. Werner, L. L. Jones, and G. W. Kreutzberg, “Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function,” Brain Research Reviews, vol. 30, no. 1, pp. 77–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Y. Lai and K. G. Todd, “Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury,” Glia, vol. 56, no. 3, pp. 259–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Polazzi and A. Contestabile, “Reciprocal interactions between microglia and neurons: from survival to neuropathology,” Reviews in the Neurosciences, vol. 13, no. 3, pp. 221–242, 2002. View at Google Scholar · View at Scopus
  24. R. S. Roque, C. J. Imperial, and R. B. Caldwell, “Microglial cells invade the outer retina as photoreceptors degenerate in Royal College of Surgeons rats,” Investigative Ophthalmology and Visual Science, vol. 37, no. 1, pp. 196–203, 1996. View at Google Scholar · View at Scopus
  25. E. H. Hughes, F. C. Schlichtenbrede, C. C. Murphy et al., “Generation of activated sialoadhesin-positive microglia during retinal degeneration,” Investigative Ophthalmology & Visual Science, vol. 44, no. 5, pp. 2229–2234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zeng, X. Zhu, C. Zhang, L. Yang, L. Wu, and M. O. M. Tso, “Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice,” Investigative Ophthalmology and Visual Science, vol. 46, no. 8, pp. 2992–2999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. F. Ng and J. W. Streilein, “Light-induced migration of retinal microglia into the subretinal space,” Investigative Ophthalmology and Visual Science, vol. 42, no. 13, pp. 3301–3310, 2001. View at Google Scholar · View at Scopus
  28. T. Harada, C. Harada, S. Kohsaka et al., “Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration,” The Journal of Neuroscience, vol. 22, no. 21, pp. 9228–9236, 2002. View at Google Scholar · View at Scopus
  29. J. M. Provis, C. M. Diaz, and P. L. Penfold, “Microglia in human retina: a heterogeneous population with distinct ontogenies,” Perspectives on Developmental Neurobiology, vol. 3, no. 3, pp. 213–222, 1996. View at Google Scholar · View at Scopus
  30. E. Schuetz and S. Thanos, “Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases,” Current Drug Targets, vol. 5, no. 7, pp. 619–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Boya, J. Calvo, and A. Prado, “The origin of microglial cells,” Journal of Anatomy, vol. 129, no. 1, pp. 177–186, 1979. View at Google Scholar · View at Scopus
  32. A. Sierra, A. C. Gottfried-Blackmore, B. S. Mcewen, and K. Bulloch, “Microglia derived from aging mice exhibit an altered inflammatory profile,” GLIA, vol. 55, no. 4, pp. 412–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. U. K. Hanisch, “Microglia as a source and target of cytokine activities in the brain,” in Microglia in the Regenerating and Degenerating Central Nervous System, W. J. Streit, Ed., Springer, New York, NY, USA, 2010. View at Google Scholar
  34. D. van Rossum and U. K. Hanisch, “Microglia,” Metabolic Brain Disease, vol. 19, no. 3-4, pp. 393–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. E. U. Powell and R. Field, “Diabetic retinopathy and rheumatoid arthritis,” The Lancet, vol. 284, no. 7349, pp. 17–18, 1964. View at Publisher · View at Google Scholar · View at Scopus
  36. T. S. Kern, “Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy,” Experimental Diabetes Research, vol. 2007, Article ID 95103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Kaul, A. Hodgkinson, J. M. Tarr, E. M. Kohner, and R. Chibber, “Is inflammation a common retinal-renal-nerve pathogenic link in diabetes?” Current diabetes reviews, vol. 6, no. 5, pp. 294–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kojima, T. Yamada, and M. Tamai, “Quantitative analysis of interleukin-6 in vitreous from patients with proliferative vitreoretinal diseases,” Japanese Journal of Ophthalmology, vol. 45, no. 1, pp. 40–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Tang and T. S. Kern, “Inflammation in diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 30, no. 5, pp. 343–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Zhang, H. Liu, M. Al-Shabrawey, R. Caldwell, and R. Caldwell, “Inflammation and diabetic retinal microvascular complications,” Journal of Cardiovascular Disease Research, vol. 2, no. 2, pp. 96–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. F. González-Scarano and G. Baltuch, “Microglia as mediators of inflammatory and degenerative diseases,” Annual Review of Neuroscience, vol. 22, pp. 219–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Yang, H. Sun, L. Wu et al., “Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 50, no. 5, pp. 2319–2327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. G. Soufi, M. Vardyani, R. Sheervalilou, M. Mohammadi, and M. H. Somi, “Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats,” General Physiology and Biophysics, vol. 31, no. 4, pp. 431–438, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling, and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. X. L. Du, D. Edelstein, L. Rossetti et al., “Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 12222–12226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. M. Stern, S. D. Yan, S. F. Yan, and A. M. Schmidt, “Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes,” Ageing Research Reviews, vol. 1, no. 1, pp. 1–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Palsamy and S. Subramanian, “Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats,” Journal of Cellular Physiology, vol. 224, no. 2, pp. 423–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Yoshida, S. Yoshida, T. Ishibashi, M. Kuwano, and H. Inomata, “Suppression of retinal neovascularization by the NF-κB inhibitor pyrrolidine dithiocarbamate in mice,” Investigative Ophthalmology and Visual Science, vol. 40, no. 7, pp. 1624–1629, 1999. View at Google Scholar · View at Scopus
  50. A. L. Wang, A. C. H. Yu, Q. H. He, X. Zhu, and M. O. M. Tso, “AGEs mediated expression and secretion of TNF alpha in rat retinal microglia,” Experimental Eye Research, vol. 84, no. 5, pp. 905–913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. L. Wautier, M. P. Wautier, A. M. Schmidt et al., “Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7742–7746, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. J. L. Wautier, C. Zoukourian, O. Chappey et al., “Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats,” Journal of Clinical Investigation, vol. 97, no. 1, pp. 238–243, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. J. L. Wautier and P. J. Guillausseau, “Advanced glycation end products, their receptors and diabetic angiopathy,” Diabetes and Metabolism, vol. 27, no. 5 I, pp. 535–542, 2001. View at Google Scholar · View at Scopus
  54. G. A. Limb, A. H. Chignell, W. Green, F. LeRoy, and D. C. Dumonde, “Distribution of TNFα and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 80, no. 2, pp. 168–173, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Xu, T. Qaum, and A. P. Adamis, “Sensitive blood-retinal barrier breakdown quantitation using Evans blue,” Investigative Ophthalmology and Visual Science, vol. 42, no. 3, pp. 789–794, 2001. View at Google Scholar · View at Scopus
  56. J. K. Krady, A. Basu, C. M. Allen et al., “Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy,” Diabetes, vol. 54, no. 5, pp. 1559–1565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. L. Wang, A. C. Yu, L. T. Lau et al., “Minocycline inhibits LPS-induced retinal microglia activation,” Neurochemistry International, vol. 47, no. 1-2, pp. 152–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. J. W. Baynes and S. R. Thorpe, “Role of oxidative stress in diabetic complications: a new perspective on an old paradigm,” Diabetes, vol. 48, no. 1, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. B. J. Davis, J. M. Forbes, M. C. Thomas et al., “Superior renoprotective effects of combination therapy with ACE and AGE inhibition in the diabetic spontaneously hypertensive rat,” Diabetologia, vol. 47, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Wautier, O. Chappey, S. Corda, D. M. Stern, A. M. Schmidt, and J. Wautier, “Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 280, no. 5, pp. E685–E694, 2001. View at Google Scholar · View at Scopus
  61. L. F. Lue, D. G. Walker, L. Brachova et al., “Involvement of microglial receptor for advanced glycation endproducts (RAGE)in Alzheimer's disease: identification of a cellular activation mechanism,” Experimental Neurology, vol. 171, no. 1, pp. 29–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Dukic-Stefanovic, J. Gasic-Milenkovic, W. Deuther-Conrad, and G. Münch, “Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs),” Journal of Neurochemistry, vol. 87, no. 1, pp. 44–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Wong, S. Dukic-Stefanovic, J. Gasic-Milenkovic et al., “Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia,” European Journal of Neuroscience, vol. 14, no. 12, pp. 1961–1967, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Y. Zeng, W. R. Green, and M. O. M. Tso, “Microglial activation in human diabetic retinopathy,” Archives of Ophthalmology, vol. 126, no. 2, pp. 227–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Omri, F. Behar-Cohen, Y. De Kozak et al., “Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model,” The American Journal of Pathology, vol. 179, no. 2, pp. 942–953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Gehrmann, R. B. Banati, and G. W. Kreutzberg, “Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules,” Journal of Neuroimmunology, vol. 48, no. 2, pp. 189–198, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. P. L. Penfold, J. M. Provis, and S. C. K. Liew, “Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells,” Journal of Neuroimmunology, vol. 45, no. 1-2, pp. 183–192, 1993. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Joly, M. Francke, E. Ulbricht et al., “Resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions,” The American Journal of Pathology, vol. 174, no. 6, pp. 2310–2323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. F. Abcouwer, “Angiogenic factors and cytokines in diabetic retinopathy,” Journal of Clinical and Cellular Immunology, supplement 1, no. 11, pp. 1–12, 2013. View at Publisher · View at Google Scholar
  70. W. Panenka, H. Jijon, L. M. Herx et al., “P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase,” Journal of Neuroscience, vol. 21, no. 18, pp. 7135–7142, 2001. View at Google Scholar · View at Scopus
  71. A. M. A. El-Asrar, “Role of inflammation in the pathogenesis of diabetic retinopathy,” Middle East African Journal of Ophthalmology, vol. 19, no. 1, pp. 70–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Abu El-Asrar, L. Missotten, and K. Geboes, “Expression of cyclo-oxygenase-2 and downstream enzymes in diabetic fibrovascular epiretinal membranes,” British Journal of Ophthalmology, vol. 92, no. 11, pp. 1534–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Kuwano, S. Nakao, H. Yamamoto et al., “Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis,” The FASEB Journal, vol. 18, no. 2, pp. 300–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. G. I. Liou, “Diabetic retinopathy: role of inflammation and potential therapies for anti-inflammation,” World Journal of Diabetes, vol. 1, no. 1, pp. 12–18, 2010. View at Publisher · View at Google Scholar
  75. K. Zorena, J. Myśliwska, M. Myśliwiec et al., “Serum TNF-α level predicts nonproliferative diabetic retinopathy in children,” Mediators of Inflammation, vol. 2007, Article ID 92196, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. V. van Hecke, J. M. Dekker, G. Nijpels et al., “Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study,” Diabetologia, vol. 48, no. 7, pp. 1300–1306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. W. Spijkerman, M.-A. Gall, L. Tarnow et al., “Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes,” Diabetic Medicine, vol. 24, no. 9, pp. 969–976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. D. S. N. T. Le, R. Miles, P. J. Savage et al., “The association of plasma fibrinogen concentration with diabetic microvascular complications in young adults with early-onset of type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 82, no. 3, pp. 317–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. T. T. Nguyen, E. Alibrahim, F. M. A. Islam et al., “Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: The multi-ethnic study of atherosclerosis,” Diabetes Care, vol. 32, no. 9, pp. 1704–1709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. B. E. K. Klein, M. D. Knudtson, M. Y. Tsai, and R. Klein, “The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: wisconsin epidemiologic study of diabetic retinopathy,” Archives of Ophthalmology, vol. 127, no. 9, pp. 1175–1182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. T. Schram, N. Chaturvedi, C. G. Schalkwijk, J. H. Fuller, and C. D. A. Stehouwer, “Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes—the EURODIAB prospective complications study,” Diabetologia, vol. 48, no. 2, pp. 370–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. L. S. Lim, E. Shyong Tai, P. Mitchell et al., “C-reactive protein, body mass index, and diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 51, no. 9, pp. 4458–4463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Yuuki, T. Kanda, Y. Kimura et al., “Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy,” Journal of Diabetes and its Complications, vol. 15, no. 5, pp. 257–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. G. A. Limb, L. Webster, H. Soomro, S. Janikoun, and J. Shilling, “Platelet expression of tumour necrosis factor-alpha (TNF-α), TNF receptors and intercellular adhesion molecule-1 (ICAM-1) in patients with proliferative diabetic retinopathy,” Clinical and Experimental Immunology, vol. 118, no. 2, pp. 213–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Demircan, B. G. Safran, M. Soylu, A. A. Ozcan, and S. Sizmaz, “Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy,” Eye, vol. 20, no. 12, pp. 1366–1369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Cicik, H. Tekin, S. Akar et al., “Interleukin-8, nitric oxide and glutathione status in proliferative vitreoretinopathy and proliferative diabetic retinopathy,” Ophthalmic Research, vol. 35, no. 5, pp. 251–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Zorena, M. Kula, E. Malinowska, D. Raczyńska, M. Myśliwiec, and K. Raczyńska, “Threshold serum concentrations of tumour necrosis factor alpha (TNFα) as a potential marker of the presence of microangiopathy in children and adolescents with type 1 diabetes mellitus (T1DM),” Human Immunology, vol. 74, no. 1, pp. 75–81, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. R. B. Caldwell, M. Bartoli, M. A. Behzadian et al., “Vascular endothelial growth factor and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives,” Diabetes/Metabolism Research and Reviews, vol. 19, no. 6, pp. 442–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. X. Wang, G. Wang, and Y. Wang, “Intravitreous Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor 1a in Patients With Proliferative Diabetic Retinopathy,” The American Journal of Ophthalmology, vol. 148, no. 6, pp. 883–889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Liu, M. Costa, and C. Gerhardinger, “IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation,” PLoS ONE, vol. 7, no. 5, Article ID e36949, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Liu, L. F. Leo, C. McGregor, A. Grivitishvili, C. J. Barnstable, and J. Tombran-Tink, “Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice,” Molecular Medicine, vol. 18, pp. 1387–1401, 2012. View at Google Scholar · View at Scopus
  92. J. Gehrmann, Y. Matsumoto, and G. W. Kreutzberg, “Microglia: intrinsic immuneffector cell of the brain,” Brain Research Reviews, vol. 20, no. 3, pp. 269–287, 1995. View at Publisher · View at Google Scholar · View at Scopus
  93. C. A. Colton and D. L. Gilbert, “Production of superoxide anions by a CNS macrophage, the microglia,” FEBS Letters, vol. 223, no. 2, pp. 284–288, 1987. View at Publisher · View at Google Scholar · View at Scopus
  94. R. B. Banati, G. Rothe, G. Valet, and G. W. Kreutzberg, “Detection of lysosomal cysteine proteinases in microglia: flow cytometric measurement and histochemical localization of cathepsin B and L,” Glia, vol. 7, no. 2, pp. 183–191, 1993. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Sayyah, I. T. Najafabadi, S. Beheshti, and S. Majzoob, “Lipopolysaccharide retards development of amygdala kindling but does not affect fully-kindled seizures in rats,” Epilepsy Research, vol. 57, no. 2-3, pp. 175–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. J. P. Godbout, B. M. Berg, K. W. Kelley, and R. W. Johnson, “α-tocopherol reduces lipopolysaccharide-induced peroxide radical formation and interleukin-6 secretion in primary murine microglia and in brain,” Journal of Neuroimmunology, vol. 149, no. 1-2, pp. 101–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. S. G. Kremlev, R. L. Roberts, and C. Palmer, “Differential expression of chemokines and chemokine receptors during microglial activation and inhibition,” Journal of Neuroimmunology, vol. 149, no. 1-2, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. D. J. Kauffmann, J. C. van Meurs, D. A. Mertens, E. Peperkamp, C. Master, and M. E. Gerritsen, “Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 900–906, 1994. View at Google Scholar · View at Scopus
  99. B. M. Ben-Mahmud, W. H. Chan, R. M. Abdulahad et al., “Clinical validation of a link between TNF-α and the glycosylation enzyme core 2 GlcNAc-T and the relationship of this link to diabetic retinopathy,” Diabetologia, vol. 49, no. 9, pp. 2185–2191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Doehmen, V. Poulaki, K. Koizumi, K. Kirchhof, and A. M. Joussen, “The TNF-Inhibitor Enbrel prevents early diabetic retinopathy changes in vivo,” Investigative Ophthalmology & Visual Science, vol. 43, supplement 1, p. U301, 2002, abstract no. 1332. View at Google Scholar
  101. L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Yoshida, A. Yoshida, T. Ishibashi, S. G. Elner, and V. M. Elner, “Role of MCP-1 and MIP-1α in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. N. J. Rothwell and G. N. Luheshi, “Interleukin 1 in the brain: biology, pathology and therapeutic target,” Trends in Neurosciences, vol. 23, no. 12, pp. 618–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. T. D. O. S. Pereira, G. N. F. da Costa, A. R. S. Santiago, A. F. Ambrósio, and P. F. M. dos Santos, “High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia,” Brain Research, vol. 1316, pp. 129–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. R. A. Kowluru and S. Odenbach, “Role of interleukin-1β in the pathogenesis of diabetic retinopathy,” The British Journal of Ophthalmology, vol. 88, no. 10, pp. 1343–1347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. C. A. Aveleira, C. M. Lin, S. F. Abcouwer, A. F. Ambrósio, and D. A. Antonetti, “TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability,” Diabetes, vol. 59, no. 11, pp. 2872–2882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. A. E. Cardona, E. P. Pioro, M. E. Sasse et al., “Control of microglial neurotoxicity by the fractalkine receptor,” Nature Neuroscience, vol. 9, no. 7, pp. 917–924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. He, S. Appel, and W. Le, “Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum,” Brain Research, vol. 909, no. 1-2, pp. 187–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Tikka, B. L. Fiebich, G. Goldsteins, R. Keinänen, and J. Koistinaho, “Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia,” Journal of Neuroscience, vol. 21, no. 8, pp. 2580–2588, 2001. View at Google Scholar · View at Scopus
  110. D. Y. Lu, C. H. Tang, Y. H. Chen, and I. H. Wei, “Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia,” Journal of Cellular Biochemistry, vol. 110, no. 3, pp. 697–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. T. S. Kern and R. L. Engerman, “Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin,” Diabetes, vol. 50, no. 7, pp. 1636–1642, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. DAMAD Study Group, “Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial,” Diabetes, vol. 38, no. 4, pp. 491–498, 1989. View at Publisher · View at Google Scholar · View at Scopus
  113. Early Treatment of Diabetic Retinopathy Research Group, “Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group,” Ophthalmology, vol. 98, supplement 5, pp. 757–765, 1991. View at Google Scholar
  114. J. G. Lawrenson, “Histology and pathogenesis of diabeti retinopathy,” in Diabetic Eye Disease, A. R. Rudnicka and J. Birch, Eds., Butterworth-Heinemann, Woburn, Mass, USA, 2000. View at Google Scholar
  115. R. Talahalli, S. Zarini, N. Sheibani, R. C. Murphy, and R. A. Gubitosi-Klug, “Increased synthesis of leukotrienes in the mouse model of diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 51, no. 3, pp. 1699–1708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. A. S. Ibrahim, M. M. El-Shishtawy, A. Peña Jr., and G. I. Liou, “Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation,” Molecular Vision, vol. 16, pp. 2033–2042, 2010. View at Google Scholar · View at Scopus
  117. L. Zheng, Y. Du, C. Miller et al., “Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes,” Diabetologia, vol. 50, no. 9, pp. 1987–1996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Nagai, D. B. Murray, T. O. Metz, and J. W. Baynes, “Chelation: A fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications,” Diabetes, vol. 61, no. 3, pp. 549–559, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Edelstein and M. Brownlee, “Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine,” Diabetes, vol. 41, no. 1, pp. 26–29, 1992. View at Google Scholar · View at Scopus
  120. Q. Li, A. Verma, P. Han et al., “Diabetic eNOS-knockout mice develop accelerated retinopathy,” Investigative Ophthalmology and Visual Science, vol. 51, no. 10, pp. 5240–5246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. A. J. Barber, D. A. Antonetti, T. S. Kern et al., “The Ins2Akita mouse as a model of early retinal complications in diabetes,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2210–2218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. N. P. Akimov and R. C. Rentería, “Spatial frequency threshold and contrast sensitivity of an optomotor behavior are impaired in the Ins2 Akita mouse model of diabetes,” Behavioural Brain Research, vol. 226, no. 2, pp. 601–605, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. D. N. Cook, S. C. Chen, L. M. Sullivan et al., “Generation and analysis of mice lacking the chemokine fractalkine,” Molecular & Cellular Biology, vol. 21, no. 9, pp. 3159–3165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Hatori, A. Nagai, R. Heisel, J. K. Ryu, and S. U. Kim, “Fractalkine and fractalkine receptors in human neurons and glial cells,” Journal of Neuroscience Research, vol. 69, no. 3, pp. 418–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. J. A. Garcia, P. A. Pino, M. Mizutani et al., “Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation,” The Journal of Immunology, vol. 191, no. 3, pp. 1063–1072, 2013. View at Publisher · View at Google Scholar · View at Scopus
  126. J. M. Kezic, X. Chen, E. P. Rakoczy, and P. G. McMenamin, “The effects of age and Cx3cr1 deficiency on retinal microglia in the Ins2Akita diabetic mouse,” Investigative Ophthalmology and Visual Science, vol. 54, no. 1, pp. 854–863, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. D. H. McDermott, A. M. Fong, Q. Yang et al., “Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1241–1250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. L. Ziegler-Heitbrock and T. P. Hofer, “Toward a refined definition of monocyte subsets,” Frontiers in Immunology, vol. 4, article 23, 2013. View at Google Scholar
  129. C. Auffray, D. Fogg, M. Garfa et al., “Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior,” Science, vol. 317, no. 5838, pp. 666–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. E. L. Gautiar, T. Shay, J. Miller et al., “Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages,” Nature Immunology, vol. 13, no. 11, pp. 1118–1128, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Böhm, A.-M. Ordelheide, J. Machann et al., “Common genetic variation in the SERPINF1 locus determines overall adiposity, obesity-related insulin resistance, and circulating leptin levels,” PLoS ONE, vol. 7, no. 3, Article ID e34035, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Xu, F. Ping, J. Yin et al., “Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus,” PLoS ONE, vol. 8, Article ID e81615, 2013. View at Google Scholar
  133. J. L. Santiago, B. Z. Alizadeh, A. Martínez et al., “Study of the association between the CAPSL-IL7R locus and type 1 diabetes,” Diabetologia, vol. 51, no. 9, pp. 1653–1658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Nishat, H. Shabir, A. S. Azmi, and H. R. Ansari, “A3 adenosine receptor: a plausible therapeutic target for cardio-protection in diabetes,” Recent Patents on Cardiovascular Drug Discovery, vol. 7, no. 1, pp. 59–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Ohsawa, T. Sanagi, Y. Nakamura, E. Suzuki, K. Inoue, and S. Kohsaka, “Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration,” Journal of Neurochemistry, vol. 121, no. 2, pp. 217–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. A. S. Ibrahim, M. M. El-shishtawy, W. Zhang, R. B. Caldwell, and G. I. Liou, “A2A adenosine receptor (A2AAR) as a therapeutic target in diabetic retinopathy,” The American Journal of Pathology, vol. 178, no. 5, pp. 2136–2145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. G. I. Liou, S. Ahmad, M. Naime, N. Fatteh, and A. S. Ibrahim, “Role of adenosine in diabetic retinopathy,” Journal of Ocular Biology, Diseases, and Informatics, vol. 4, no. 1-2, pp. 19–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. M. A. Manister, “Retinal injuries from light: mechanisms, hazards and prevention,” in Retina, S. J. Ryan, A. P. Schachat, C. P. Wilkinson, D. R. Hinton, S. R. Sadda, and P. Wiedemann, Eds., pp. 1857–1870, Elsevier, London, UK, 2005. View at Google Scholar
  139. M. Rózanowska and T. Sarna, “Light-induced damage to the retina: role of rhodopsin chromophore revisited,” Photochemistry and Photobiology, vol. 81, no. 6, pp. 1305–1330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Wenzel, C. Grimm, M. Samardzija, and C. E. Remé, “Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration,” Progress in Retinal and Eye Research, vol. 24, no. 2, pp. 275–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. A. M. Santos, D. Martín-Oliva, R. M. Ferrer-Martín et al., “Microglial response to light-induced photoreceptor degeneration in the mouse retina,” Journal of Comparative Neurology, vol. 518, no. 4, pp. 477–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Zhang, J. Shen, T. T. Lam et al., “Activation of microglia and chemokines in light-induced retinal degeneration,” Molecular Vision, vol. 11, pp. 887–895, 2005. View at Google Scholar · View at Scopus
  143. J. E. Lee, K. J. Liang, R. N. Fariss, and W. T. Wong, “Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy,” Investigative Ophthalmology and Visual Science, vol. 49, no. 9, pp. 4169–4176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Song, F. Zhou, and W. R. Chen, “Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases,” Journal of Neuroinflammation, vol. 9, article 219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. H. Huang, R. Parlier, J. Shen, G. A. Lutty, and S. A. Vinores, “VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV,” PLoS ONE, vol. 8, no. 8, Article ID e71808, 2013. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Matsuda, F. Gomi, Y. Oshima, M. Tohyama, and Y. Tano, “Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARFE19 cells under oxidative stress,” Investigative Ophthalmology and Visual Science, vol. 46, no. 3, pp. 1062–1068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Zhou, L. Yang, H. Li et al., “Downregulation of VEGF mRNA expression by triamcinolone acetonide acetate-loaded chitosan derivative nanoparticles in human retinal pigment epithelial cells,” International Journal of Nanomedicine, vol. 7, pp. 4649–4660, 2012. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Singhal, J. M. Lawrence, T. E. Salt, P. T. Khaw, and G. A. Limb, “Triamcinolone attenuates macrophage/microglia accumulation associated with NMDA-induced RGC death and facilitates survival of Müller stem cell grafts,” Experimental Eye Research, vol. 90, no. 2, pp. 308–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. W. Shen, S. R. Lee, J. Araujo, S. H. Chung, L. Zhu, and M. C. Gillies, “Effect of glucocorticoids on neuronal and vascular pathology in a transgenic model of selective Muller cell ablation,” Glia, vol. 62, no. 7, pp. 1110–1124. View at Publisher · View at Google Scholar
  150. I. V. Glybina, A. Kennedy, P. Ashton, G. W. Abrams, and R. Iezzi, “Intravitreous delivery of the corticosteroid fluocinolone acetonide attenuates retinal degeneration in S334ter-4 Rats,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 4243–4252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. K. L. Kirkwood, L. M. Golub, and P. G. Bradford, “Non-antimicrobial and antimicrobial tetracyclines inhibit IL-6 expression in murine osteoblasts,” Annals of the New York Academy of Sciences, vol. 878, pp. 667–670, 1999. View at Publisher · View at Google Scholar · View at Scopus
  152. T. J. Federici, “The non-antibiotic properties of tetracyclines: clinical potential in ophthalmic disease,” Pharmacological Research, vol. 64, no. 6, pp. 614–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. C. A. Cukras, P. Petrou, E. Y. Chew, C. B. Meyerle, and W. T. Wong, “Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study,” Investigative Ophthalmology and Visual Science, vol. 53, no. 7, pp. 3865–3874, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. P. Massin, F. Bandello, J. G. Garweg et al., “Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE study): a 12-month, randomized, controlled, double-masked, multicenter phase II study,” Diabetes Care, vol. 33, no. 11, pp. 2399–2405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. I. U. Scott, G. R. Jackson, D. A. Quillen et al., “Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy: a randomized clinical trial,” JAMA Ophthalmology, vol. 132, no. 5, pp. 535–543, 2014. View at Google Scholar
  156. G. R. Jackson, I. U. Scott, D. A. Quillen, L. E. Walter, and T. W. Gardner, “Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 96, no. 5, pp. 699–703, 2012. View at Publisher · View at Google Scholar · View at Scopus
  157. I. U. Scott, G. R. Jackson, D. A. Quillen, R. Klein, J. Liao, and T. W. Gardner, “Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in mild to moderate nonproliferative diabetic retinopathy: a randomized proof-of-concept clinical trial,” JAMA Ophthalmology, 2014. View at Publisher · View at Google Scholar