Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2015, Article ID 467814, 13 pages
http://dx.doi.org/10.1155/2015/467814
Review Article

Complications of Macular Peeling

1Department of Ophthalmology, La Paz Hospital, 28046 Madrid, Spain
2Department of Ophthalmology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy

Received 25 March 2015; Accepted 28 June 2015

Academic Editor: Tamer A. Macky

Copyright © 2015 Mónica Asencio-Duran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Macular peeling refers to the surgical technique for the removal of preretinal tissue or the internal limiting membrane (ILM) in the macula for several retinal disorders, ranging from epiretinal membranes (primary or secondary to diabetic retinopathy, retinal detachment…) to full-thickness macular holes, macular edema, foveal retinoschisis, and others. The technique has evolved in the last two decades, and the different instrumentations and adjuncts have progressively advanced turning into a safer, easier, and more useful tool for the vitreoretinal surgeon. Here, we describe the main milestones of macular peeling, drawing attention to its associated complications.

1. Introduction

Macular peeling generally refers to the surgical technique for the correction of a hole or epiretinal membrane (ERM) in the macula, or other reasons that involve the removal of the internal limiting membrane (ILM) in the central retina. Removal of preretinal macular fibrosis [1] begun shortly after the development of closed pars plana vitreoretinal surgery by Machemer and colleagues [2]. Then, bimanual surgical techniques, first used in eyes with complicated proliferative diabetic retinopathy and retinal detachments [3, 4], also permitted the resection of abnormal glial tissue from the superficial retina. The first to remove localized epiretinal membranes that were covering or distorting the macula in the absence of other primary conditions was Machemer [5], but it was popularized by many authors, who named differently such anomalies as epimacular proliferation or macular pucker [68].

The ILM was first named by Pacini in 1845 and represents the boundary between the retina and the vitreous body [9]. It is a periodic acid Schiff- (PAS-) positive basement membrane, formed by astrocytes and the end feet of Müller cells and composed of collagen fibers, glycosaminoglycans, laminin, and fibronectin [10] (Figure 1).

Figure 1: Hematoxylin and eosin 40x showing a paucicellular basement membrane composed of collagen fibers, glycosaminoglycans, laminin, fibronectin, and some astrocytes.

The close association between ILM and the Müller cells suggests that it derives from these cells [10]. The macula, the parafoveal, and peripapillary regions of ILM are the thickest, measuring an average of 2.5 μm in thickness, and progressively thinning to 0.5 μm at the vitreous base [11].

Histological and clinical studies demonstrated that the ILM acts as a scaffold for cellular proliferation of Müller cells, thus allowing the survival of ganglion cells [12], and for migration of glial cells, creating a tangential contractile force on the macular surface and posterior vitreous cortex, sometimes with subclinical manifestations, only detected by OCT, and others leading to the formation of tight, thickened, refringent premacular posterior membranes [13]. It seems that ILM may have its main function only during early embryogenesis, and its removal would not have negative effects in the aged human eye [12].

2. Surgical Techniques, Instrumentations, and Adjuncts

The ILM was not clinically relevant until surgical removal of ERM by means of vitrectomy in the 80’s identified small fragments of ILM adherent to the surgical specimens [14]. Posteriorly, a technique for repairing sub-ILM macular hemorrhages in patients with Terson syndrome with intentional ILM extraction was presented at the Annual Meeting of the American Academy of Ophthalmology in 1990, with excellent results which guided the authors to consider the technique of ILM removal in all forms of tractional maculopathy [15]. After the 90’s, the technique became widely extended until accepted today because not only it releases these contractile forces, but also it guarantees complete separation of the posterior hyaloid from the macular surface [16] and also decreases the risk of postoperative ERM formation [17].

The ILM peeling can be achieved after a standard pars plana vitrectomy (PPV), in which a careful detachment and remotion of the posterior hyaloid intend to avoid any possible scaffolding for cellular proliferation and subsequent retinal traction [18]. To detach the posterior hyaloid, there are 2 widespread maneuvers [19]: by means of suction close to the optic disk with the help of the extrusion needle or vitrector tip and control pressure of up to 150 mmHg or by means of mechanical elevation of the posterior hyaloid with a membrane pick or microvitreoretinal blade (MVR). Then, the macular peeling can be performed: the first step is to create an initial flap in the ILM with a sharp instrument such as pick forceps, bent MVR, or vitreoretinal forceps. Once the flap is created, the desired area of ILM is removed with the vitreoretinal forceps using circular movements around the fovea similar to a capsulorhexis and in parallel to the retinal surface [13]. The extent of ILM to be peeled varies from approximately 1 disk area centered at the fovea [20, 21] to an area extending from the superotemporal to the inferotemporal vascular arcades [2224]. The confirmation of tissue removed during surgery can be obtained with histopathologic studies [25], but postoperatively it is clinically difficult to ascertain the area of retina denuded. Monochromatic images, obtained using the scanning laser ophthalmoscope (SLO) at wavelengths of 488 and 514 nm, were superior to color and red-free photographs [26].

3. Vital Dyes in Macular Surgery

Because the ILM is thin and transparent, surgical remotion can become technically challenging even for experienced surgeons especially in difficult cases such as myopic macular hole or foveoschisis. Staining of the ILM with adjuvant dyes can make the procedure easier to perform and more effective, reducing also the operating time and the mechanical trauma to the retina [27].

Several authors have reported the use of indocyanine green (ICG) and trypan blue for assisted ILM peeling in macular hole (MH) surgery, but concerns soon appeared when evidence from several clinical reports and in vitro toxicity showed worse visual outcomes with both dyes [28, 29].

4. ICG

ICG has been widely used since 1970 for choroidal angiography [30]. Then, anterior segment surgeons described techniques for the intraocular use of ICG dye to facilitate visualization of the endothelial cells [31] and the anterior capsule of the crystalline lens [32], but it was popularized in the very beginning of our century in several reports for vitreoretinal surgery [3338]. ICG is highly soluble in water but poorly soluble in saline solution and must be diluted in water or in glucose 5% to prevent later precipitation in the balanced salt solution of the eye. The concentration, volume infusion, exposure time, and osmolarity of the final solution used both for ILM and ERM removal have been varied between different authors, and the staining can be done in a fully filled eye with the infusion stopped [28, 34, 35, 3948], or after complete fluid-air exchange [41, 42]. In order to minimize the side effects of ICG on the retina, several techniques have been emerging: to inject small amounts and concentrations with the infusion on and immediate suction of remains to wash the dye out rapidly [49, 50], to bind remnants by placing autologous serum [51] over the area of retina lacking ILM, knowing that ICG has high affinity to lipoproteins, and to prevent the access of ICG into the subretinal space in eyes with MH by using a drop of perfluorocarbon liquid [52, 53] or viscoelastic materials [54, 55]. Though several reports showed favourable anatomical and visual results with the use of ICG staining, the latest suspicions on its safety forced surgeons to compare functional outcomes with and without the use of the dye. In this respect, numerous studies reported poorer visual results when ICG was used to stain both ILM and ERM [44, 56, 57]. In spite of the fact that ICG could induce a rigidness and detachment of the ILM and facilitate its removal with staining, Gandorfer and Haritoglou found on histopathologic studies fragments of Müller cells and other undetermined retinal structures adherent to the retinal side of the ILM, suggesting that intravitreal application of ICG may cause retinal damage by altering the cleavage plane to the innermost retinal layers [28, 58, 59]. These structural findings were confirmed in a donor human eye [60] and in nonhuman eyes [61].

Others suggested unusual atrophic changes in the retinal pigment epithelium (RPE) on the site of the previous macular hole or in the area where the ICG solution would have had direct access to the bare RPE cells [39, 47, 62]. In experimental models, it was demonstrated that subretinal delivery of ICG was able to induce as much RPE as photoreceptor and outer nuclear layer damage [63, 64], especially if the eye was air filled [65]. It has been hypothesized that the RPE damage could be related to direct toxicity of the dye to these cells [66]. Some authors attributed an enhanced toxic effect of ICG staining with intense light exposure [67, 68], so that Ho and colleagues proposed to remove the sodium from the solvent for the dye preparation in order to reduce the cytotoxicity [69].

Phototoxicity alone has been studied as a possible cause for RPE cells damage induced by ICG, due to its absorption spectrum (700–800 nm) in front of the emission spectrum of current light sources employed in PPV (380–760 nm) [70, 71]. This deleterious effect could be reduced through the intake of 10 mg/day of oral lutein several days before surgery, according to Wu and colleagues [66].

There also have been described visual field defects with the use of ICG staining: from small nasal scotomas to nasal hemianopsia, whose mechanism of production is not yet well understood [28, 56, 72, 73]. Slimming of the retinal nerve fiber layer [74] or damage to the retinal ganglion cells (RGC) with high concentrations of ICG has been hypothesized [75]. Persistence of the dye seen as fluorescence at the optic disk has been detected in eyes in which ICG was employed up to 2 years after the macular surgery [7680]; this finding could be related to an uptake of ICG by RPE cells through the hole in cases of MH [77]. Other authors have detected a reduction of the b-wave in experimental electroretinograms after the exposure to ICG, suggesting some degree of inner retinal damage [81].

In spite of the fact that there are many reports suggesting the possibility of ICG toxicity to the retina and RPE, experimental toxicity may not correlate exactly with actual clinical application of ICG, in which the intraoperative conditions can be much different. There is notable laboratory experimentation to the contrary demonstrating that even at high concentrations followed by maximum power illumination for 3 minutes ICG caused no histologically detectable damage [82]. Taking into account the differences in species and in vivo-ex vivo studies, this raises the possibility that either the ICG instillation or the infusion [83] or fluid-air exchange [84, 85] might have hydrodissected the ILM from the underlying retina and injured the retinal nerve fiber layer. Indeed, if ICG instillation hydrodissected the ILM from the retina, the ICG solution would have had direct access to the retinal tissue, which might help to explain their reported photodynamic effects [86].

5. Infracyanine Green

Infracyanine green (IFCG), unlike ICG, does not contain iodine, and it needs glucose 5% to solve in water, but it is isoosmolar, which would reduce the potential for retinal toxicity, compared to ICG [87], and hypoosmolar related to vitreous humor. IFCG has been used to stain both ILM and ERM without serious clinical adverse events [8892]. In histopathologic studies of ILM specimens obtained from MH and diabetic macular edema (DME) eyes, 80% contained remnants of Müller cells footplates, neural cells, and ganglion cells [93, 94], suggesting would create the same cleavage plane of the ILM as ICG. Nevertheless, no evidence of acute or delayed permanent damage to the RPE at different concentrations of IFCG or in combination with endoillumination was found [95]. In spite of its apparent safety, its use is not very widespread.

6. Trypan Blue

Trypan blue (TB) has been widely used in anterior segment surgery to stain corneal endothelial cells [96] and lens capsule [97]. In vitreoretinal surgery, it has been used to stain the posterior hyaloid, the ERM, and the ILM [98105]. The mixture with glucose 10% allows adequate staining for both ERM and ILM without detectable toxic side effects [98101, 103108], but some authors established that, due to the cellular affinity of TB, the dye would not stain properly the acellular ILM [109] and would need to be used under air for a longer time to improve staining of ILM [110]. Reports comparing TB with ICG found better visual outcomes with trypan blue assisted ILM peeling [111], and no clinical [107, 112] or experimental acute damage was observed [108, 113], although some authors detected some retinal disorganization at concentrations of more than 0.15% [81, 108, 114], or exposure times of more than 2 minutes [115].

7. Other Dyes

Triamcinolone acetonide (TA) was first used by Tano intravitreally in 1980 [116], after being used in ophthalmology to treat many ophthalmic diseases. This water-insoluble steroid aids in the visualization of vitreous, upon the insoluble nature of the white crystals and the integration into loosely organized collagen matrices [117120]. An extension of this mechanism is thought to be responsible for the staining of the superficial portions of an ILM [121127] and ERM [120]. The drug is commercially available in an aqueous suspension and has been administered with or without the removal of its solvent in the second case in order to avoid possible toxic effects [117, 120, 122, 123, 127]. Different methods such as sedimentation or filtration techniques and centrifugation [128] are usually used to eliminate the solvent, usually benzyl alcohol, from the preparations. Lately, new products based on TA have appeared that can be injected directly into the eye. Other possible adverse events of TA are increase in intraocular pressure [122, 124, 125, 127, 129, 130], generally transient and controlled medically, cataract progression [129, 130], or, in some cases, endophthalmitis that has been described as infectious (more delayed and painless than usual) or noninfectious (more acute, in which hypopyon may represent the TA material itself or a sterile inflammatory reaction) [131].

Brilliant Blue G (BBG), also known as acid blue 90 or Coomassie BBG, was first reported in vitreoretinal surgery by Enaida et al. and has been used specifically for the staining of the ILM [132] with good morphological and functional results [133135]. The dye stains badly the ERM, but some authors performed double BBG staining and double peeling for both ERM and ILM in order to prevent ERM recurrence [136]. Recently, a mixture of TB and BBG solution for staining both the ERM and ILM simultaneously avoided the need for fluid-air exchange [137, 138].

Patent blue is another blue dye which was first used in cataract surgery for anterior lens capsule staining [81]. It has been used posteriorly for both ERM and ILM removal with mild staining [139] and without clinical adverse events at 6-month follow-up in small series [140], although more studies are needed to evaluate the efficacy and the safety of the drug. Novel promising vital dyes are under investigation in an in vitro and in vivo models that may be useful for vitreoretinal surgery like lutein and zeaxanthin-based natural solutions.

8. Indications for Macular Peeling

In idiopathic MH, ILM peeling relieves foveal traction from the retinal surface [141143] by complete removal of any epiretinal tissues and by stimulation of gliosis [61], therefore shortening the face-down period in the post-op and the need for the use of long-acting gas [144146], with better anatomical closure rates but not better visual improvement [147]. In myopic FTMH, the mechanism of hole formation is more complex and involves not only tangential and/or anteroposterior traction, some authors suggested that the ILM could have a role in the development of foveal retinoschisis that frequently accompanies these cases [148]. Several reports support this reasoning with better visual results and higher definitive closure rates when ILM peeling was performed [149151]. When FTMH is secondary to trauma and does not resolve by itself (which occurs in up to 44.4% [152]), PPV with removal of posterior hyaloid, ILM peeling, and gas tamponade can obtain the best anatomic success over other techniques [23, 153].

Epiretinal membranes began to be routinely removed by PPV from 1978 [14]. Surgery is recommended in both idiopathic and secondary membranes in eyes whose vision is significantly reduced by the ERM, although secondary ERMs showed a greater amount of improvement than idiopathic ones [154, 155]. Also, as ILM may act as a scaffold for reproliferation, ILM peeling can not only prevent a recurrent postoperative formation of ERM [37, 147, 156158] but also reduce the preoperative cystoid macular edema associated with ERMs [159].

ILM peeling has been used in some cases of refractory diabetic macular edema (DME) after failed intravitreal injections of anti-VEGF, steroids, and/or laser photocoagulation, with decrease in foveal thickness but with no improvement of visual acuity postoperatively [160163]. In branch and central retinal vein occlusion-associated macular edema, there are few series of selected cases that show improvement in visual acuity after PPV with the removal of preretinal hyaloid and peeling of the ILM [164166]. As in DME, PPV alone can provide better retinal oxygenation [167], but ILM peeling could help in pumping blood and fluid from the retina into the vitreous cavity [164] and could also reduce the recurrence rate of both macular edema and ERM compared to PPV alone [168171].

Other possible applications of macular peeling are optic disk maculopathy [172], vitreomacular traction syndrome [173], Terson’s syndrome [174], and prevention of ERM formation in retinal detachment surgery [175, 176]. Dithmar also reports a case of soft confluent drusen absorption after ILM peeling [177].

9. Complications of Macular Peeling

There are some complications after macular peeling that are common to other vitreoretinal procedures, probably more related to PPV than peeling maneuvers, even in the era of microincision surgery [178, 179], like cataract progression [86, 147, 180182], intraocular pressure increase [46, 182184], visual fields defects [28, 181, 185187], retinal tears [22, 86, 151, 182, 188190], retinal detachment [46, 73, 86, 150, 151, 181, 188, 191193], vitreous hemorrhage [46, 194], ocular hypotony [195], dislocation of the intraocular lens in pseudophakic eyes [86, 192], macular phototoxicity [188], RPE changes [20, 39, 193], and endophthalmitis [191, 196, 197].

There are other complications directly attributable to macular peeling, including focal retinal hemorrhages and edema, which generally resolves spontaneously without the need of treatment [20, 23, 188, 198]. Paracentral scotomas and visual field defects, usually asymptomatic, have also been reported but not directly correlated with the removal of the ILM and could result from adjuvant stain or mechanical trauma to the nerve fiber layer (RNFL) [20, 44, 74, 198200]. There are also few reports about retinoschisis [199] and macular edema after macular peeling [20, 201]. Karacorlu described small punctate lesions of the RPE and choriocapillaris attributed to ILM grasping during the surgery that do not appear to affect the surgical outcome [202].

The earliest change in the macula is postoperative swelling of the arcuate RNFL, which disappears within 3 months. It appears as hypoautofluorescent arcuate striae in the macular region on infrared and autofluorescence imaging, with corresponding hyperreflectant swelling demonstrated on spectral-domain optical coherence tomography (OCT) [200]. This is followed by dissociated optic nerve fiber layer (DONFL), now detectable on fundus examination with blue filters in half of the eyes, as arcuate dark striae along the course of the RNFL [203, 204], or as concentric macular dark spots on the en-face OCT [205]. The correspondent image on OCT is seen as “dimples” in the inner retinal layers that seem to be the result of an interplay between trauma and healing processes constrained by nerve fiber layer [206] and it is not associated with adverse effects on the visual function, as detected by visual acuity and scanning laser ophthalmoscopy microperimetry [203, 204, 207, 208]. Postoperative foveal displacement toward the optic disc has been also described after both ERM and ILM peeling [209, 210] and it might be responsible for the stretching and thinning of the retinal parenchyma in the temporal subfield with the thickening of the nasal macula. This is probably secondary to axonal transport and contractility alterations in the RNFL, due to apoptotic and atrophic degeneration on the peripapillary area [200]. Ganglion cells do not seem to be affected by ILM peeling, although some authors detected a reduction in the inner plexiform layer thickness by OCT imaging at 6 months after BBG-assisted surgery, because of trauma to the Müller cells contained in the ganglion cell layer [211]. It is not consistent with other retrospective study that found up to 46.7% of optic nerve atrophy 6 months after ICG-assisted surgery, which caused irreversible peripheral nasal visual field defect, so that would need longer follow-up investigation [72].

Iatrogenic eccentric full-thickness retinal breaks have been documented after ERM and ILM removal in idiopathic FTMH and DME [204207], with an average incidence of 0.6% [212]. Usually, they present bright fluorescence on autofluorescence imaging and as flat full-thickness holes on OCT (Figure 2).

Figure 2: Parafoveal iatrogenic macular hole 1 week after ILM peeling for a full-thickness macular hole (FTMH).

Sandali and colleagues. did not found iatrogenic macular holes or choroidal neovascularization in any of the retrospective series of 909 patients with a mean follow-up of two years, but proximity to the fovea correlated well with a worse visual prognosis [212]. It is believed that the location of the holes represents the initial or the end site of ILM elevation, or the result of a weakening in the glial structure of the retina [90, 212, 213]. Some authors propose a modification of the peeling avoiding the foveolar ILM in order to prevent retinal inner changes and probably achieving better final visual outcomes [214].

There are some reports of retained intraretinal emulsified silicone oil and gas bubble after ILM removal and endotamponade with these agents that contributed to the surgery failure [215, 216].

Microtrauma to the RPE and defects in Bruch’s membrane are thought to be the origin of rare complications reported like choroidal neovascularization or formation of RAP-like lesions [217219], and it seems that prior age or trauma-related changes and surgical trauma are predisposing factors for its development.

Uemoto described 2 cases of an epimacular proliferative response after ILM peeling, related to the injury but not progressing after 2 years [143].

Subretinal hemorrhage and subsequent vitreous hemorrhage are other complications that can occur after ILM removal for FTMH [220]. The latter can occur even in the absence of retinal hemorrhage in hypertensive patients [221].

10. Discussion

Comparing series with and without ILM peeling, all but one study [14] reported statistically significant improved outcomes if the ILM was peeled. Internal limiting membrane removal appears to be especially beneficial in eyes with primary surgical failure or reopened/large/chronic holes [14]. A literature meta-analysis, reviewing 31 studies involving 1,654 eyes undergoing macular hole surgery, compared three different surgical techniques: no adjuvant, no ILM peeling; adjuvant, no ILM peeling; and no adjuvant, ILM peeling. There was no statistically significant difference between the first two methods, but ILM removal resulted in statistically significant () better anatomical and functional outcomes over both the other techniques [222]. In a prospective multicenter randomized controlled trial with 141 patients, although there was no evidence of a better distance visual acuity after the ILM peeling versus no ILM peeling techniques, a benefit in favor of no ILM peeling was ruled out, but it seemed to be the treatment of choice for idiopathic stages 2 to 3 FTMH [223]. It must be taken into account that ILM peeling can be a traumatic procedure that has acute adverse effects on the underlying retinal layers and even in the RPE and choriocapillaris. Further investigation of these subclinical changes may assist in aiding the development and improvement of minimally traumatic techniques for ILM removal.

11. Conclusions

The combined ERM-ILM peeling for the correction of macular ERM and the ILM peeling for the correction of MH and its variations are useful techniques in the new era of microvitreoretinal sugery, usually with good anatomical and functional outcomes, but they can have a little proportion of complications (toxic or mechanical, transient, or irreversible), even in hands of experienced surgeons, which must be taken into consideration in order to achieve the best results.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. G. N. Wise, “Relationship of idiopathic preretinal macular fibrosis to posterior vitreous detachment,” The American Journal of Ophthalmology, vol. 79, no. 3, pp. 358–362, 1975. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Machemer, J.-M. Parel, and H. Buettner, “A new concept for vitreous surgery. I. Instrumentation,” The American Journal of Ophthalmology, vol. 73, no. 1, pp. 1–7, 1972. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Machemer, “Vitrectomy in diabetic retinopathy: removal of preretinal proliferations,” Transactions of the American Academy of Ophthalmology and Otolaryngology, vol. 80, no. 2, pp. 394–395, 1975. View at Google Scholar · View at Scopus
  4. R. G. Michels and H. D. Gilbert, “Surgical management of macular pucker after retinal reattachment surgery,” American Journal of Ophthalmology, vol. 88, no. 5, pp. 925–929, 1979. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Machemer, “The surgical removal of epiretinal macular membranes (macular puckers),” Klinische Monatsblatter fur Augenheilkunde, vol. 173, no. 1, pp. 36–42, 1978. View at Google Scholar · View at Scopus
  6. M. Shea, “The surgical management of macular pucker,” Canadian Journal of Ophthalmology, vol. 14, no. 2, pp. 110–113, 1979. View at Google Scholar · View at Scopus
  7. S. Charles, “Epimacular proliferation,” in Vitreous Microsurgery, W. S. Schachet, Ed., chapter 8, pp. 131–133, Williams & Wilkins, Baltimore, Md, USA, 1981. View at Google Scholar
  8. A. R. Margheiro, D. P. Nachazel, P. L. Murphy et al., “The surgical management of epiretinal membranes, scientific exhibit, American Academy of Ophthalmology Annual Meeting, 1981,” Ophthalmology, vol. 88, supplement, article 82, 1981. View at Google Scholar
  9. G. Wollensak, E. Spoerl, G. Grosse, and C. Wirbelauer, “Biomechanical significance of the human internal limiting lamina,” Retina, vol. 26, no. 8, pp. 965–968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. S. Fine, “Limiting membranes of the sensory retina and pigment epithelium. An electron microscopic study,” Archives of Ophthalmology, vol. 66, pp. 847–860, 1961. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Y. Foos, “Vitreoretinal juncture: topographical variations,” Investigative ophthalmology, vol. 11, no. 10, pp. 801–808, 1972. View at Google Scholar · View at Scopus
  12. W. Halfter, M. Willem, and U. Mayer, “Basement membrane-dependent survival of retinal ganglion cells,” Investigative Opthalmology & Visual Science, vol. 46, no. 3, 2005. View at Publisher · View at Google Scholar
  13. A. Almony, E. Nudleman, G. K. Shah et al., “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina, vol. 32, no. 5, pp. 877–891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Kuhn, “Point: to peel or not to peel, that is the question,” Ophthalmology, vol. 109, no. 1, pp. 9–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Morris, F. Kuhn, and C. D. Witherspoon, “Hemorrhagic macular cysts,” Ophthalmology, vol. 101, article 1, 1994. View at Google Scholar · View at Scopus
  16. F. M. Recchia, A. J. Ruby, and C. A. Carvalho Recchia, “Pars plana vitrectomy with removal of the internal limiting membrane in the treatment of persistent diabetic macular edema,” American Journal of Ophthalmology, vol. 139, no. 3, pp. 447–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Matsunaga, H. Ozeki, Y. Hirabayashi, S. Shimada, and Y. Ogura, “Histopathologic evaluation of the internal limiting membrane surgically excised from eyes with diabetic maculopathy,” Retina, vol. 25, no. 3, pp. 311–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Abdelkader and N. Lois, “Internal limiting membrane peeling in vitreo-retinal surgery,” Survey of Ophthalmology, vol. 53, no. 4, pp. 368–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. P. Han, G. W. Abrams, and T. M. Aaberg, “Surgical excision of the attached posterior hyaloid,” Archives of Ophthalmology, vol. 106, no. 7, pp. 998–1000, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Haritoglou, C. A. Gass, M. Schaumberger, O. Ehrt, A. Gandorfer, and A. Kampik, “Macular changes after peeling of the internal limiting membrane in macular hole surgery,” The American Journal of Ophthalmology, vol. 132, no. 3, pp. 363–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hirata, Y. Inomata, T. Kawaji, and H. Tanihara, “Persistent subretinal indocyanine green induces retinal pigment epithelium atrophy,” American Journal of Ophthalmology, vol. 136, no. 2, pp. 353–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. P. Da Mata, S. E. Burk, C. D. Riemann et al., “Indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for macular hole repair,” Ophthalmology, vol. 108, no. 7, pp. 1187–1192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Kuhn, R. Morris, V. Mester, and C. D. Witherspoon, “Internal limiting membrane removal for traumatic macular holes,” Ophthalmic Surgery and Lasers, vol. 32, no. 4, pp. 308–315, 2001. View at Google Scholar · View at Scopus
  24. M. Landolfi, M. A. Zarbin, and N. Bhagat, “Macular holes,” Ophthalmology Clinics of North America, vol. 15, no. 4, pp. 565–572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Heegard, O. A. Jensen, and J. U. Prause, “Structure and composition of the inner limiting membrane of the retina,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 224, no. 4, pp. 355–360, 1986. View at Publisher · View at Google Scholar
  26. M. Miura, A. E. Elsner, M. Osako et al., “Spectral imaging of the area of internal limiting membrane peeling,” Retina, vol. 25, no. 4, pp. 468–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. E. B. Rodrigues, C. H. Meyer, M. E. Farah, and P. Kroll, “Intravitreal staining of the internal limiting membrane using indocyanine green in the treatment of macular holes,” Ophthalmologica, vol. 219, no. 5, pp. 251–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Haritoglou, A. Gandorfer, C. A. Gass, M. Schaumberger, M. W. Ulbig, and A. Kampik, “Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation,” American Journal of Ophthalmology, vol. 134, no. 6, pp. 836–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Mavrofrides, W. E. Smiddy, J. W. Kitchens, A. Salicone, and W. Feuer, “Indocyanine green-assisted internal limiting membrane peeling for macular holes: toxicity?” Retina, vol. 26, no. 6, pp. 637–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Kogure, N. J. David, U. Yamanouchi, and E. Choromokos, “Infrared absorption angiography of the fundus circulation,” Archives of Ophthalmology, vol. 83, no. 2, pp. 209–214, 1970. View at Publisher · View at Google Scholar · View at Scopus
  31. J. K. McEnerney and G. A. Peyman, “Indocyanine green: a new vital stain for use before penetrating keratoplasty,” Archives of Ophthalmology, vol. 96, no. 8, pp. 1445–1447, 1978. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Horiguchi, K. Miyahe, I. Ohta, and Y. Ito, “Staining of the lens capsule for circular continuous capsulorrhexis in eyes with white cataract,” Archives of Ophthalmology, vol. 116, no. 4, pp. 535–537, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. S. E. Burk, A. P. Da Mata, M. E. Snyder, R. H. Rosa Jr., and R. E. Foster, “Indocyanine green-assisted peeling of the retinal internal limiting membrane,” Ophthalmology, vol. 107, no. 11, pp. 2010–2014, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Kadonosono, N. Itoh, E. Uchio, S. Nakamura, and S. Ohno, “Staining of internal limiting membrane in macular hole surgery,” Archives of Ophthalmology, vol. 118, no. 8, pp. 1116–1118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. P. Da Mata, S. E. Burk, C. D. Riemann et al., “Indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for macular hole repair,” Ophthalmology, vol. 108, no. 7, pp. 1187–1192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Gandorfer, E. M. Messmer, M. W. Ulbig, and A. Kampik, “Indocyanine green selectively stains the internal limiting membrane,” The American Journal of Ophthalmology, vol. 131, no. 3, pp. 387–388, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. W. Johnson, “Improvements in the understanding and treatment of macular hole,” Current Opinion in Ophthalmology, vol. 13, no. 3, pp. 152–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. H. Kwok, Y. S. Yeung, V. Y. W. Lee, and T. H. Wong, “ICG-assisted peeling of the retinal ILM,” Ophthalmology, vol. 109, no. 6, pp. 1039–1040, 2002. View at Google Scholar · View at Scopus
  39. N. E. Engelbrecht, J. Freeman, P. Sternberg Jr. et al., “Retinal pigment epithelial changes after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling,” The American Journal of Ophthalmology, vol. 133, no. 1, pp. 89–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Kumar, G. Prakash, and R. P. Singh, “Indocyanine green enhanced maculorhexis in macular hole surgery,” Indian Journal of Ophthalmology, vol. 50, no. 2, pp. 123–126, 2002. View at Google Scholar · View at Scopus
  41. A. W. A. Weinberger, B. Schlossmacher, C. Dahlke, M. Hermel, B. Kirchhof, and N. F. Schrage, “Indocyanine-green-assisted internal limiting membrane peeling in macular hole surgery—a follow-up study,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 11, pp. 913–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. K. H. Kwok, T. Y. Y. Lai, D. T. W. Yew, and W. W. Y. Li, “Internal limiting membrane staining with various concentrations of indocyanine green dye under air in macular surgeries,” American Journal of Ophthalmology, vol. 136, no. 2, pp. 223–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Sakamoto, I. Yamanaka, T. Kubota, and T. Ishibashi, “Indocyanine green-assisted peeling of the epiretinal membrane in proliferative vitreoretinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 241, no. 3, pp. 204–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Ando, K. Sasano, F. Suzuki, and N. Ohba, “Indocyanine green-assisted ILM peeling in macular hole surgery revisited,” The American Journal of Ophthalmology, vol. 138, no. 5, pp. 886–887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. H. Kwok, T. Y. Y. Lai, W. W. Y. Li, D. C. F. Woo, and N. R. Chan, “Indocyanine green-assisted internal limiting membrane removal in epiretinal membrane surgery: a clinical and histologic study,” American Journal of Ophthalmology, vol. 138, no. 2, pp. 194–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Lochhead, E. Jones, D. Chui et al., “Outcome of ICG-assisted ILM peel in macular hole surgery,” Eye, vol. 18, no. 8, pp. 804–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Maia, J. A. Haller, D. J. Pieramici et al., “Retinal pigment epithelial abnormalities after internal limiting membrane peeling guided by indocyanine green staining,” Retina, vol. 24, no. 1, pp. 157–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Kumagai, M. Furukawa, N. Ogino, A. Uemura, and E. Larson, “Long-term outcomes of internal limiting membrane peeling with and without indocyanine green in macular hole surgery,” Retina, vol. 26, no. 6, pp. 613–617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. E. H. Bovey, T. J. Wolfensberger, and M. Gonvers, “Staining of internal limiting membrane in vitreomacular surgery: a simplified technique,” Retina, vol. 22, no. 4, pp. 498–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. J. C. Schmidt, E. B. Rodrigues, C. H. Meyer, S. Hoerle, and P. Kroll, “A modified technique to stain the internal limiting membrane with indocyanine green,” Ophthalmologica, vol. 218, no. 3, pp. 176–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Nakamura, K. Hayakawa, S. Sawaguchi, and T. Gaja, “Removal of retinal indocyanine green dye by autologous serum irrigation in macular hole surgery,” Retina, vol. 25, no. 6, pp. 736–741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Facino, B. Mochi, S. Lai, and R. Terrile, “A simple way to prevent indocyanine green from entering the subretinal space during vitrectomy for retinal detachment due to myopic macular hole,” European Journal of Ophthalmology, vol. 14, no. 3, pp. 269–271, 2004. View at Google Scholar · View at Scopus
  53. J. L. Olson, A. V. On, and N. Mandava, “Protecting the retinal pigment epithelium during macular hole surgery,” Clinical and Experimental Ophthalmology, vol. 33, no. 6, pp. 576–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Cacciatori, M. Azzolini, M. Sborgia, M. Coppola, and V. de Molfetta, “Sodium hyaluronate 2.3% prevents contact between indocyanine green and retinal pigment epithelium during vitrectomy for highly myopic macular hole retinal detachment,” Retina, vol. 24, no. 1, pp. 160–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Kusaka, T. Oshita, M. Ohji, and Y. Tano, “Reduction of the toxic effect of indocyanine green on retinal pigment epithelium during macular hole surgery,” Retina, vol. 23, no. 5, pp. 733–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. C. A. Gass, C. Haritoglou, M. Schaumberger, and A. Kampik, “Functional outcome of macular hole surgery with and without indocyanine green-assisted peeling of the internal limiting membrane,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 241, no. 9, pp. 716–720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Horio and M. Horiguchi, “Effect on visual outcome after macular hole surgery when staining the internal limiting membrane with indocyanine green dye,” Archives of Ophthalmology, vol. 122, no. 7, pp. 992–996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Enaida, T. Sakamoto, T. Hisatomi, Y. Goto, and T. Ishibashi, “Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 3, pp. 209–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Haritoglou, A. Gandorfer, C. A. Gass, and A. Kampik, “Histology of the vitreoretinal interface after staining of the internal limiting membrane using glucose 5% diluted indocyanine and infracyanine green,” American Journal of Ophthalmology, vol. 137, no. 2, pp. 345–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Wolf, U. Schnurbusch, P. Wiedemann, J. Grosche, A. Reichenbach, and H. Wolburg, “Peeling of the basal membrane in the human retina: ultrastructural effects,” Ophthalmology, vol. 111, no. 2, pp. 238–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Nakamura, T. Murata, T. Hisatomi et al., “Ultrastructure of the vitreoretinal interface following the removal of the internal limiting membrane using indocyanine green,” Current Eye Research, vol. 27, no. 6, pp. 395–399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Sakamoto, K. Itaya, Y. Noda, and T. Ishibashi, “Retinal pigment epithelial changes after indocyanine green-assisted vitrectomy,” Retina, vol. 22, no. 6, pp. 794–796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Kawaji, A. Hirata, Y. Inomata, T. Koga, and H. Tanihara, “Morphological damage in rabbit retina caused by subretinal injection of indocyanine green,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 2, pp. 158–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Maia, L. Kellner, E. de Juan Jr. et al., “Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits,” Retina, vol. 24, no. 1, pp. 80–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. M. P. Czajka, B. W. McCuen II, T. J. Cummings, H. Nguyen, S. Stinnett, and F. Wong, “Effects of indocyanine green on the retina and retinal pigment epithelium in a porcine model of retinal hole,” Retina, vol. 24, no. 2, pp. 275–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. W.-C. Wu, D.-N. Hu, and J. E. Roberts, “Phototoxicity of indocyanine green on human retinal pigment epithelium in vitro and its reduction by lutein,” Photochemistry and Photobiology, vol. 81, no. 3, pp. 537–540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Gandorfer, C. Haritoglou, A. Gandorfer, and A. Kampik, “Retinal damage from indocyanine green in experimental macular surgery,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 316–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. H.-F. Yam, A. K.-H. Kwok, K.-P. Chan et al., “Effect of indocyanine green and illumination on gene expression in human retinal pigment epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 44, no. 1, pp. 370–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. J.-D. Ho, H.-C. Chen, S.-N. Chen, and R. J.-F. Tsai, “Reduction of indocyanine green-associated photosensitizing toxicity in retinal pigment epithelium by sodium elimination,” Archives of Ophthalmology, vol. 122, no. 6, pp. 871–878, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Haritoglou, A. Gandorfer, M. Schaumberger, R. Tadayoni, A. Gandorfer, and A. Kampik, “Light-absorbing properties and osmolarity of indocyanine-green depending on concentration and solvent medium,” Investigative Ophthalmology and Visual Science, vol. 44, no. 6, pp. 2722–2729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Haritoglou, S. Priglinger, A. Gandorfer, U. Welge-Lussen, and A. Kampik, “Histology of the vitreoretinal interface after indocyanine green staining of the ILM, with illumination using a halogen and xenon light source,” Investigative Ophthalmology & Visual Science, vol. 46, no. 4, pp. 1468–1472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Ando, O. Yasui, H. Hirose, and N. Ohba, “Optic nerve atrophy after vitrectomy with indocyanine green-assisted internal limiting membrane peeling in diffuse diabetic macular edema,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 12, pp. 995–999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Haritoglou, A. Gandorfer, C. A. Gass, M. Schaumberger, M. W. Ulbig, and A. Kampik, “The effect of indocyanine-green on functional outcome of macular pucker surgery,” American Journal of Ophthalmology, vol. 135, no. 3, pp. 328–337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Yamashita, A. Uemura, H. Kita, and T. Sakamoto, “Analysis of the retinal nerve fiber layer after indocyanine green-assisted vitrectomy for idiopathic macular holes,” Ophthalmology, vol. 113, no. 2, pp. 280–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Iriyama, S. Uchida, Y. Yanagi et al., “Effects of indocyanine green on retinal ganglion cells,” Investigative Ophthalmology & Visual Science, vol. 45, no. 3, pp. 943–947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. A. W. A. Weinberger, B. Kirchhof, B. E. Mazinani, and N. F. Schrage, “Persistent indocyanine green (ICG) fluorescence 6 weeks after intraocular ICG administration for macular hole surgery,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 239, no. 5, pp. 388–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. A. P. Ciardella, W. Schiff, G. Barile et al., “Persistent indocyanine green fluorescence after vitrectomy for macular hole,” The American Journal of Ophthalmology, vol. 136, no. 1, pp. 174–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Zhang, L. Lu, Y. Li, S. Li, and X. Huang, “Observation of persistent fundus autofluorescence after internal limiting membrane peeling assisted by indocyanine green solution of different concentrations,” Eye Science, vol. 26, no. 1, pp. 44–47, 2011. View at Google Scholar
  79. T. L. Kersey, A. Bolton, and C. K. Patel, “Serial autofluorescence imaging over two years following indocyanine green-assisted internal limiting membrane peel for macular hole,” Clinical & Experimental Ophthalmology, vol. 33, no. 5, pp. 538–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Nakamura, K. Hayakawa, A. Imaizumi, M. Sakai, and S. Sawaguchi, “Persistence of retinal indocyanine green dye following vitreous surgery,” Ophthalmic Surgery Lasers and Imaging, vol. 36, no. 1, pp. 37–45, 2005. View at Google Scholar · View at Scopus
  81. C. Lüke, M. Lüke, T. S. Dietlein et al., “Retinal tolerance to dyes,” British Journal of Ophthalmology, vol. 89, no. 9, pp. 1188–1191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Grisanti, P. Szurman, F. Gelisken, S. Aisenbrey, J. Oficjalska-Mlynczak, and K. U. Bartz-Schmidt, “Histological findings in experimental macular surgery with indocyanine green,” Investigative Ophthalmology & Visual Science, vol. 45, no. 1, pp. 282–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Hirata, N. Yonemura, T. Hasumura, Y. Murata, and A. Negi, “Effect of infusion air pressure on visual field defects after macular hole surgery,” American Journal of Ophthalmology, vol. 130, no. 5, pp. 611–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. H. C. Boldt, P. M. Munden, J. C. Folk, and M. G. Mehaffey, “Visual field defects after macular hole surgery,” The American Journal of Ophthalmology, vol. 122, no. 3, pp. 371–381, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Hasumura, N. Yonemura, A. Hirata, Y. Murata, and A. Negi, “Retinal damage by air infusion during vitrectomy in rabbit eyes,” Investigative Ophthalmology & Visual Science, vol. 41, no. 13, pp. 4300–4304, 2000. View at Google Scholar · View at Scopus
  86. A. P. Da Mata, S. E. Burk, R. E. Foster et al., “Long-term follow-up of indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for idiopathic macular hole repair,” Ophthalmology, vol. 111, no. 12, pp. 2246–2253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Stalmans, E. H. van Aken, M. Veckeneer, E. J. Feron, and I. Stalmans, “Toxic effect of indocyanine green on retinal pigment epithelium related to osmotic effects of the solvent,” American Journal of Ophthalmology, vol. 134, no. 2, pp. 282–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Ullern, S. Roman, J.-F. Dhalluin et al., “Contribution of intravitreal infracyanine green to macular hole and epimacular membrane surgery: preliminary study,” Journal Français d'Ophtalmologie, vol. 25, no. 9, pp. 915–920, 2002. View at Google Scholar · View at Scopus
  89. K. Rivett, L. Kruger, and S. Radloff, “Infracyanine-assisted internal limiting membrane peeling in macular hole repair: does it make a difference?” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 5, pp. 393–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. A. van de Moere and P. Stalmans, “Anatomical and visual outcome of macular hole surgery with infracyanine green-assisted peeling of the internal limiting membrane, endodrainage, and silicone oil tamponade,” American Journal of Ophthalmology, vol. 136, no. 5, pp. 879–887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Lanzetta, A. Polito, M. Del Borrello et al., “Idiopathic macular hole surgery with low-concentration infracyanine green-assisted peeling of the internal limiting membrane,” American Journal of Ophthalmology, vol. 142, no. 5, pp. 771.e2–776.e2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Husson-Danan, A. Glacet-Bernard, G. Soubrane, and G. Coscas, “Clinical evaluation of the use of indocyanine green for peeling the internal limiting membrane in macular hole surgery,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 3, pp. 291–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. E. C. La Heij, S. C. Dieudonné, C. M. Mooy et al., “Immunohistochemical analysis of the internal limiting membrane peeled with infracyanine green,” American Journal of Ophthalmology, vol. 140, no. 6, pp. 1123–1125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Haritoglou, S. Priglinger, A. Gandorfer, U. Welge-Lussen, and A. Kampik, “Histology of the vitreoretinal interface after indocyanine green staining of the ILM, with illumination using a halogen and xenon light source,” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1468–1472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. T. L. Jackson, B. Vote, B. C. Knight, A. El-Amir, M. R. Stanford, and J. Marshall, “Safety testing of infracyanine green using retinal pigment epithelium and glial cell cultures,” Investigative Ophthalmology and Visual Science, vol. 45, no. 10, pp. 3697–3703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. M. S. Norn, “Vital staining of corneal endothelium in cataract extraction,” Acta Ophthalmologica, vol. 49, no. 5, pp. 725–733, 1971. View at Google Scholar · View at Scopus
  97. G. R. J. Melles, P. W. T. de Waard, J. H. Pameyer, and W. H. Beekhuis, “Trypan blue capsule staining to visualize the capsulorhexis in cataract surgery,” Journal of Cataract and Refractive Surgery, vol. 25, no. 1, pp. 7–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. F. A. Teba, A. Mohr, C. Eckardt et al., “Trypan blue staining in vitreoretinal surgery,” Ophthalmology, vol. 110, no. 12, pp. 2409–2412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Gandorfer, C. Haritoglou, and A. Kampik, “Staining of the ILM in macular surgery,” British Journal of Ophthalmology, vol. 87, no. 12, article 1530, 2003. View at Publisher · View at Google Scholar
  100. C. Haritoglou, K. Eibl, M. Schaumberger et al., “Functional outcome after trypan blue-assisted vitrectomy for macular pucker: a prospective, randomized, comparative trial,” American Journal of Ophthalmology, vol. 138, no. 1, pp. 1–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. A. K. H. Kwok, T. Y. Y. Lai, W. W. Y. Li, D. T. W. Yew, and V. W. Y. Wong, “Trypan blue- and indocyanine green-assisted epiretinal membrane surgery: clinical and histopathological studies,” Eye, vol. 18, no. 9, pp. 882–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Balayre, M. Boissonnot, L. Curutchet, and P. Dighiero, “Role of trypan blue in epiretinal membrane surgery,” Journal Francais d'Ophtalmologie, vol. 28, no. 3, pp. 290–297, 2005. View at Google Scholar · View at Scopus
  103. K. Li, D. Wong, P. Hiscott, P. Stanga, C. Groenewald, and J. McGalliard, “Trypan blue staining of internal limiting membrane and epiretinal membrane during vitrectomy: visual results and histopathological findings,” British Journal of Ophthalmology, vol. 87, no. 2, pp. 216–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. E. Pel-Przybyszewska, E. Szkudlarek, A. Szkudlarek, and J. Nawrocki, “Trypan blue staining in treatment of macular hole,” Klinika Oczna, vol. 106, supplement 3, pp. 503–505, 2004. View at Google Scholar · View at Scopus
  105. K. L. Lee, S. Dean, and S. Guest, “A comparison of outcomes after indocyanine green and trypan blue assisted internal limiting membrane peeling during macular hole surgery,” British Journal of Ophthalmology, vol. 89, no. 4, pp. 420–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. E. J. Feron, M. Veckeneer, R. Parys-Van Ginderdeuren, A. Van Lommel, G. R. J. Melles, and P. Stalmans, “Trypan blue staining of epiretinal membranes in proliferative vitreoretinopathy,” Archives of Ophthalmology, vol. 120, no. 2, pp. 141–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Balayre, M. Boissonnot, J. Paquereau, and P. Dighiero, “Evaluation of trypan blue toxicity in idiopathic epiretinal membrane surgery with macular function test using multifocal electroretinography: seven prospective case studies,” Journal Français d'Ophtalmologie, vol. 28, no. 2, pp. 169–176, 2005. View at Google Scholar · View at Scopus
  108. C. Haritoglou, A. Gandorfer, M. Schaumberger et al., “Trypan blue in macular pucker surgery: an evaluation of histology and functional outcome,” Retina, vol. 24, no. 4, pp. 582–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Yamamoto, N. Ozaki, and K. Murakami, “Double visualization using triamcinolone acetonide and trypan blue during stage 3 macular hole surgery,” Ophthalmologica, vol. 218, no. 5, pp. 297–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. E. B. Rodrigues, C. H. Meyer, J. C. Schmidt, and P. Kroll, “Trypan blue stains the epiretinal membrane but not the internal limiting membrane,” British Journal of Ophthalmology, vol. 87, no. 11, pp. 1431–1432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Shukla, J. Kalliath, N. Neelakantan, K. B. Naresh, and K. Ramasamy, “A comparison of brilliant blue G, trypan blue, and indocyanine green dyes to assist internal limiting membrane peeling during macular hole surgery,” Retina, vol. 31, no. 10, pp. 2021–2025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Rebolleda, F. J. Munoz Negrete, and M. Suarez-Figueroa, “Trypan blue staining in vitreoretinal surgery,” Ophthalmology, vol. 111, pp. 1622–1623, 2004. View at Google Scholar
  113. L. Kodjikian, T. Richter, M. Halberstadt et al., “Toxic effects of indocyanine green, infracyanine green, and trypan blue on the human retinal pigmented epithelium,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 243, no. 9, pp. 917–925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Veckeneer, K. Van Overdam, J. Monzer et al., “Ocular toxicity study of trypan blue injected into the vitreous cavity of rabbit eyes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 239, no. 9, pp. 698–704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Jin, S. Uchida, Y. Yanagi, M. Aihara, and M. Araie, “Neurotoxic effects of trypan blue on rat retinal ganglion cells,” Experimental Eye Research, vol. 81, no. 4, pp. 395–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Tano, D. Chandler, and R. Machemer, “Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide,” American Journal of Ophthalmology, vol. 90, no. 6, pp. 810–816, 1980. View at Publisher · View at Google Scholar · View at Scopus
  117. G. A. Peyman, R. Cheema, M. D. Conway, and T. Fang, “Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloid during pars plana vitrectomy,” Retina, vol. 20, no. 5, pp. 554–555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. T. Sakamoto, M. Miyazaki, T. Hisatomi et al., “Triamcinolone-assisted pars plana vitrectomy improves the surgical procedures and decreases the postoperative blood-ocular barrier breakdown,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 6, pp. 423–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. S. E. Burk, A. P. Da Mata, M. E. Snyder, S. Schneider, R. H. Osher, and R. J. Cionni, “Visualizing vitreous using Kenalog suspension,” Journal of Cataract and Refractive Surgery, vol. 29, no. 4, pp. 645–651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. N. Yamamoto, N. Ozaki, and K. Murakami, “Triamcinolone acetonide facilitates removal of the epiretinal membrane and separation of the residual vitreous cortex in highly myopic eyes with retinal detachment due to a macular hole,” Ophthalmologica, vol. 218, no. 4, pp. 248–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. E. A. Fraser, R. A. Cheema, and M. A. Roberts, “Triamcinolone acetonide-assisted peeling of retinal internal limiting membrane for macular surgery,” Retina, vol. 23, no. 6, pp. 883–884, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-assisted internal limiting membrane peeling during idiopathic macular hole surgery,” Archives of Ophthalmology, vol. 123, no. 1, pp. 96–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Haritoglou and A. Kampik, “Staining techniques in macula surgery,” Ophthalmologe, vol. 103, no. 11, pp. 927–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Karacorlu, H. Ozdemir, and S. A. Karacorlu, “Does intravitreal triamcinolone acetonide-assisted peeling of the internal limiting membrane effect the outcome of macular hole surgery?” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 243, no. 8, pp. 754–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. G. K. Shah, B. J. Rosenblatt, and M. Smith, “Internal limiting membrane peeling using triamcinolone acetonide: histopathologic confirmation,” American Journal of Ophthalmology, vol. 138, no. 4, pp. 656–657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. S. M. Couch and S. Bakri, “Use of triamcinolone during vitrectomy surgery to visualize membranes and vitreous,” Clinical Ophthalmology, vol. 2, no. 4, pp. 891–896, 2008. View at Publisher · View at Google Scholar
  127. D. Tognetto, S. Zenoni, G. Sanguinetti, C. Haritoglou, and G. Ravalico, “Staining of the internal limiting membrane with intravitreal triamcinolone acetonide,” Retina, vol. 25, no. 4, pp. 462–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. J. García-Arumí, A. Boixadera, J. Giralt et al., “Comparison of different techniques for purification of triamcinolone acetonide suspension for intravitreal use,” British Journal of Ophthalmology, vol. 89, no. 9, pp. 1112–1114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. J. K. Challa, M. C. Gillies, P. L. Penfold, J. F. Gyory, A. B. L. Hunyor, and F. A. Billson, “Exudative macular degeneration and intravitreal triamcinolone: 18 month follow up,” Australian and New Zealand Journal of Ophthalmology, vol. 26, no. 4, pp. 277–281, 1998. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Young, G. Larkin, M. Branley, and S. Lightman, “Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis,” Clinical and Experimental Ophthalmology, vol. 29, no. 1, pp. 2–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. M. S. Benz, T. G. Murray, S. R. Dubovy, R. S. Katz, and C. W. G. Eifrig, “Endophthalmitis caused by mycobacterium chelonae abscessus after intravitreal injection of triamcinolone,” Archives of Ophthalmology, vol. 121, no. 2, pp. 271–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Enaida, T. Hisatomi, Y. Hata et al., “Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling,” Retina, vol. 26, no. 6, pp. 631–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Lüke, I. Lüdeke, A. Acksteiner et al., “Morphological and functional outcome after brilliant blue G-assisted macular hole surgery,” Ophthalmologica, vol. 230, no. 2, pp. 81–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Remy, S. Thaler, R. G. Schumann et al., “An in vivo evaluation of Brilliant Blue G in animals and humans,” British Journal of Ophthalmology, vol. 92, no. 8, pp. 1142–1147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. E. Pelayes, F. Kuhn, A. M. Folgar et al., “Staining of the internal limiting membrane with the use of heavy brilliant blue G,” Ophthalmic Research, vol. 48, supplement 1, pp. 21–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Shimada, H. Nakashizuka, T. Hattori, R. Mori, Y. Mizutani, and M. Yuzawa, “Double staining with brilliant blue G and double peeling for epiretinal membranes,” Ophthalmology, vol. 116, no. 7, pp. 1370–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Mohr, M. Bruinsma, S. Oellerich, H. Frank, D. Gabel, and G. R. J. Melles, “Dyes for eyes: hydrodynamics, biocompatibility and efficacy of ‘Heavy’ (dual) dyes for chromovitrectomy,” Ophthalmologica, vol. 230, no. 2, pp. 51–58, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Veckeneer, A. Mohr, E. Alharthi et al., “Novel ‘heavy’ dyes for retinal membrane staining during macular surgery: multicenter clinical assessment,” Acta Ophthalmologica, vol. 92, no. 4, pp. 339–344, 2014. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Mennel, C. H. Meyer, J. C. Schmidt, S. Kaempf, and G. Thumann, “Trityl dyes patent blue V and brilliant blue G—clinical relevance and in vitro analysis of the function of the outer blood-retinal barrier,” Developments in Ophthalmology, vol. 42, pp. 101–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Mennel, C. H. Meyer, A. Tietjen, E. B. Rodrigues, and J. C. Schmidt, “Patent blue: a novel vital dye in vitreoretinal surgery,” Ophthalmologica, vol. 220, no. 3, pp. 190–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. S. A. Madreperla, G. L. Geiger, M. Funata, Z. De la Cruz, and W. R. Green, “Clinicopathologic correlation of a macular hole treated by cortical vitreous peeling and gas tamponade,” Ophthalmology, vol. 101, no. 4, pp. 682–686, 1994. View at Publisher · View at Google Scholar · View at Scopus
  142. J. D. M. Gass, “Reappraisal of biomicroscopic classification of stages of development of a macular hole,” American Journal of Ophthalmology, vol. 119, no. 6, pp. 752–759, 1995. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Uemoto, S. Yamamoto, and S. Takeuchi, “Epimacular proliferative response following internal limiting membrane peeling for idiopathic macular holes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 2, pp. 177–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Lai, S. Tang, J. Li, X. Liu, Y. Ling, and X. Zheng, “Observation of early closure of idiopathic macular hole after vitrectomy surgery with internal limiting membrane peeling,” Yan Ke Xue Bao, vol. 20, no. 2, pp. 93–97, 2004. View at Google Scholar · View at Scopus
  145. R. Tadayoni, A. Gaudric, B. Haouchine, and P. Massin, “Relationship between macular hole size and the potential benefit of internal limiting membrane peeling,” British Journal of Ophthalmology, vol. 90, no. 10, pp. 1239–1241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. J. C. Wickens and G. K. Shah, “Outcomes of macular hole surgery and shortened face down positioning,” Retina, vol. 26, no. 8, pp. 902–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Spiteri Cornish, N. Lois, N. Scott et al., “Vitrectomy with internal limiting membrane (ILM) peeling versus vitrectomy with no peeling for idiopathic full-thickness macular hole (FTMH),” The Cochrane Database of Systematic Reviews, vol. 6, Article ID CD009306, 2013. View at Google Scholar · View at Scopus
  148. K. Sayanagi, Y. Ikuno, and Y. Tano, “Tractional internal limiting membrane detachment in highly myopic eyes,” The American Journal of Ophthalmology, vol. 142, no. 5, pp. 850–852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. J. García-Arumí, V. Martinez, J. Puig, and B. Corcostegui, “The role of vitreoretinal surgery in the management of myopic macular hole without retinal detachment,” Retina, vol. 21, no. 4, pp. 332–338, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Kadonosono, F. Yazama, N. Itoh et al., “Treatment of retinal detachment resulting from myopic macular hole with internal limiting membrane removal,” The American Journal of Ophthalmology, vol. 131, no. 2, pp. 203–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. K. K. W. Li, E. W. H. Tang, P. S. H. Li, and D. Wong, “Double peel using triamcinolone acetonide and trypan blue in the management of myopic macular hole with retinal detachment: a case-control study,” Clinical & Experimental Ophthalmology, vol. 38, no. 7, pp. 664–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. M. M. Lai, M. M. Joshi, and M. T. Trese, “Spontaneous resolution of traumatic macular hole-related retinal detachment,” American Journal of Ophthalmology, vol. 141, no. 6, pp. 1148–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Wachtlin, C. Jandeck, S. Potthöfer, U. Kellner, and M. H. Foerster, “Long-term results following pars plana vitrectomy with platelet concentrate in pediatric patients with traumatic macular hole,” The American Journal of Ophthalmology, vol. 136, no. 1, pp. 197–199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  154. U. Mester and R. Grewing, “Vitrectomy in the treatment of epimacular membranes (macular pucker),” Klinika Oczna, vol. 92, no. 1-2, pp. 1–2, 1990. View at Google Scholar · View at Scopus
  155. C. J. Pournaras, G. Donati, P. D. Brazitikos, A. D. Kapetanios, D. L. Dereklis, and N. T. Stangos, “Macular epiretinal membranes,” Seminars in Ophthalmology, vol. 15, no. 2, pp. 100–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  156. R. Grewing and U. Mester, “Results of surgery for epiretinal membranes and their recurrences,” British Journal of Ophthalmology, vol. 80, no. 4, pp. 323–326, 1996. View at Publisher · View at Google Scholar · View at Scopus
  157. R. G. Schumann, A. Gandorfer, K. H. Eibl, P. B. Henrich, A. Kampik, and C. Haritoglou, “Sequential epiretinal membrane removal with internal limiting membrane peeling in brilliant blue G-assisted macular surgery,” British Journal of Ophthalmology, vol. 94, no. 10, pp. 1369–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. A. K. H. Kwok, T. Y. Y. Lai, and K. S. C. Yuen, “Epiretinal membrane surgery with or without internal limiting membrane peeling,” Clinical and Experimental Ophthalmology, vol. 33, no. 4, pp. 379–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Geerts, G. Pertile, W. van de Sompel, T. Moreels, and C. Claes, “Vitrectomy for epiretinal membranes: visual outcome and prognostic criteria,” Bulletin de la Societe Belge d'Ophtalmologie, no. 293, pp. 7–15, 2004. View at Google Scholar · View at Scopus
  160. T. Aboutable, “Is removal of internal limiting membrane always necessary during surgery for refractory diffuse diabetic macular edema without evident epimacular proliferation?” Klinische Monatsblatter fur Augenheilkunde, vol. 223, no. 8, pp. 681–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. C. H. Meyer, “Current treatment approaches in diabetic macular edema,” Ophthalmologica, vol. 221, no. 2, pp. 118–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. K. L. Hartley, W. E. Smiddy, H. W. Flynn Jr., and T. G. Murray, “Pars plana vitrectomy with internal limiting membrane peeling for diabetic macular edema,” Retina, vol. 28, no. 3, pp. 410–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. M.-H. Dehghan, M. Salehipour, J. Naghib, M. Babaeian, S. Karimi, and M. Yaseri, “Pars plana vitrectomy with internal limiting membrane peeling for refractory diffuse diabetic macular edema,” Journal of Ophthalmic and Vision Research, vol. 5, no. 3, pp. 162–167, 2010. View at Google Scholar · View at Scopus
  164. M. S. Mandelcorn and R. K. Nrusimhadevara, “Internal limiting membrane peeling for decompression of macular edema in retinal vein occlusion: a report of 14 cases,” Retina, vol. 24, no. 3, pp. 348–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. D. H. Park and I. T. Kim, “Long-term effects of vitrectomy and internal limiting membrane peeling for macular edema secondary to central retinal vein occlusion and hemiretinal vein occlusion,” Retina, vol. 30, no. 1, pp. 117–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Raszewska-Steglinska, P. Gozdek, S. Cisiecki, Z. Michalewska, J. Michalewski, and J. Nawrocki, “Pars plana vitrectomy with ILM peeling for macular edema secondary to retinal vein occlusion,” European Journal of Ophthalmology, vol. 19, no. 6, pp. 1055–1062, 2009. View at Google Scholar · View at Scopus
  167. E. Stefánsson, “Ocular oxygenation and the treatment of diabetic retinopathy,” Survey of Ophthalmology, vol. 51, no. 4, pp. 364–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. S. D. Pendergast, “Vitrectomy for diabetic macular edema associated with a taut premacular posterior hyaloid,” Current Opinion in Ophthalmology, vol. 9, no. 3, pp. 71–75, 1998. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Yamamoto, K. Hitani, Y. Sato, H. Yamashita, and S. Takeuchi, “Vitrectomy for diabetic macular edema with and without internal limiting membrane removal,” Ophthalmologica, vol. 219, no. 4, pp. 206–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. Z. Michalewska, M. Bednarski, J. Michalewski, and N. Jerzy, “The role of ILM peeling in vitreous surgery for proliferative diabetic retinopathy complications,” Ophthalmic Surgery Lasers and Imaging Retina, vol. 44, no. 3, pp. 238–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Gandorfer and A. Kampik, “Pars plana vitrectomy with and without peeling of the inner limiting membrane (ILM) for diabetic macular edema,” Retina, vol. 28, no. 1, pp. 187–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. K. Ishikawa, H. Terasaki, M. Mori, K. Sugita, and Y. Miyake, “Optical coherence tomography before and after vitrectomy with internal limiting membrane removal in a child with optic disc pit maculopathy,” Japanese Journal of Ophthalmology, vol. 49, no. 5, pp. 411–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Gandorfer, M. Rohleder, and A. Kampik, “Epiretinal pathology of vitreomacular traction syndrome,” British Journal of Ophthalmology, vol. 86, no. 8, pp. 902–909, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. F. Kuhn, R. Morris, C. D. Witherspoon, and V. Mester, “Terson syndrome: results of vitrectomy and the significance of vitreous hemorrhage in patients with subarachnoid hemorrhage,” Ophthalmology, vol. 105, no. 3, pp. 472–477, 1998. View at Publisher · View at Google Scholar · View at Scopus
  175. C. Aras, C. Arici, S. Akar et al., “Peeling of internal limiting membrane during vitrectomy for complicated retinal detachment prevents epimacular membrane formation,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 5, pp. 619–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. F. Höhn, F. T. A. Kretz, and M. Pavlidis, “Primary vitrectomy with peeling of the internal limiting membrane under decaline: a promising surgical maneuver for treatment of total and subtotal retinal detachment,” Ophthalmologe, vol. 111, no. 9, pp. 882–886, 2014. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Dithmar, S. Pollithy, and T. Ach, “Disappearance of central confluent soft drusen following vitrectomy and ILM peeling,” Eye, vol. 27, no. 6, pp. 779–781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  178. R. G. Michels and S. J. Ryan Jr., “Results and complications of 100 consecutive cases of pars plana vitrectomy,” American Journal of Ophthalmology, vol. 80, no. 1, pp. 24–29, 1975. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Pielen, N. I. P. Guerra, D. Böhringer et al., “Intra- and postoperative risks and complications of small-gauge (23-G) versus conventional (20-G) vitrectomy for macular surgery,” European Journal of Ophthalmology, vol. 24, no. 5, pp. 778–785, 2014. View at Publisher · View at Google Scholar · View at Scopus
  180. C. C. Gottlieb and J. A. Martin, “Phacovitrectomy with internal limiting membrane peeling for idiopathic macular hole,” Canadian Journal of Ophthalmology, vol. 37, no. 5, pp. 277–282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  181. C. Haritoglou, I. W. Reiniger, M. Schaumberger, C. A. Gass, S. G. Priglinger, and A. Kampik, “Five-year follow-up of macular hole surgery with peeling of the internal limiting membrane: update of a prospective study,” Retina, vol. 26, no. 6, pp. 618–622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. T. G. Sheidow, K. J. Blinder, N. Holekamp et al., “Outcome results in macular hole surgery: an evaluation of internal limiting membrane peeling with and without indocyanine green,” Ophthalmology, vol. 110, no. 9, pp. 1697–1701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Hasegawa, F. Okamoto, Y. Sugiura, Y. Okamoto, T. Hiraoka, and T. Oshika, “Intraocular pressure elevation after vitrectomy for various vitreoretinal disorders,” European Journal of Ophthalmology, vol. 24, no. 2, pp. 235–241, 2013. View at Publisher · View at Google Scholar · View at Scopus
  184. A. P. Costarides, P. Alabata, and C. Bergstrom, “Elevated intraocular pressure following vitreoretinal surgery,” Ophthalmology Clinics of North America, vol. 17, no. 4, pp. 507–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. R. H. Roe, H. R. McDonald, A. D. Fu et al., “Unexplained vision loss following removal of epiretinal membrane,” British Journal of Ophthalmology, vol. 94, no. 8, pp. 1033–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. C. A. Gass, C. Haritoglou, E. M. Messmer, M. Schaumberger, and A. Kampik, “Peripheral visual field defects after macular hole surgery: a complication with decreasing incidence,” British Journal of Ophthalmology, vol. 85, no. 5, pp. 549–551, 2001. View at Publisher · View at Google Scholar · View at Scopus
  187. G. T. Kokame, “Visual field defects after vitrectomy with fluid-air exchange,” The American Journal of Ophthalmology, vol. 130, no. 5, pp. 653–654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  188. D. W. Park, J. O. Sipperley, S. R. Sneed, P. U. Dugel, and J. Jacobsen, “Macular hole surgery with internal-limiting membrane peeling and intravitreous air,” Ophthalmology, vol. 106, no. 7, pp. 1392–1398, 1999. View at Publisher · View at Google Scholar · View at Scopus
  189. Y. Sato and T. Isomae, “Macular hole surgery with internal limiting membrane removal, air tamponade, and 1-day prone positioning,” Japanese Journal of Ophthalmology, vol. 47, no. 5, pp. 503–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Van De Moere and P. Stalmans, “Anatomical and visual outcome of macular hole surgery with infracyanine green-assisted peeling of the internal limiting membrane, endodrainage, and silicone oil tamponade,” The American Journal of Ophthalmology, vol. 136, no. 5, pp. 879–887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. A. K. H. Kwok and T. Y. Y. Lai, “Internal limiting membrane removal in macular hole surgery for severely myopic eyes: a case-control study,” British Journal of Ophthalmology, vol. 87, no. 7, pp. 885–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. K. Purtskhvanidze, F. Treumer, O. Junge, J. Hedderich, J. Roider, and J. Hillenkamp, “The long-term course of functional and anatomical recovery after macular hole surgery,” Investigative Ophthalmology and Visual Science, vol. 54, no. 7, pp. 4882–4891, 2013. View at Publisher · View at Google Scholar · View at Scopus
  193. A. S. Banker, W. R. Freeman, J. W. Kim et al., “Vision-threatening complications of surgery for full-thickness macular holes,” Ophthalmology, vol. 104, no. 9, pp. 1442–1453, 1997. View at Publisher · View at Google Scholar
  194. A. Gandorfer, E. M. Messmer, M. W. Ulbig, and A. Kampik, “Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane,” Retina, vol. 20, no. 2, pp. 126–133, 2000. View at Publisher · View at Google Scholar · View at Scopus
  195. C. Framme, S. Klotz, U. E. K. Wolf-Schnurrbusch, P. Wiedemann, and S. Wolf, “Intraocular pressure changes following 20G pars-plana vitrectomy,” Acta Ophthalmologica, vol. 90, no. 8, pp. 744–749, 2012. View at Publisher · View at Google Scholar · View at Scopus
  196. P. C. Ho and F. I. Tolentino, “Bacterial endophthalmitis after closed vitrectomy,” Archives of Ophthalmology, vol. 102, no. 2, pp. 207–210, 1984. View at Publisher · View at Google Scholar · View at Scopus
  197. V. P. Dave, A. Pathengay, S. G. Schwartz, and H. W. Flynn, “Endophthalmitis following pars plana vitrectomy: a literature review of incidence, causative organisms, and treatment outcomes,” Clinical Ophthalmology, vol. 8, pp. 2183–2188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  198. N. Nagai, S. Ishida, K. Shinoda, Y. Imamura, K. Noda, and M. Inoue, “Surgical effects and complications of indocyanine green-assisted internal limiting membrane peeling for idiopathic macular hole,” Acta Ophthalmologica Scandinavica, vol. 85, no. 8, pp. 883–889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. H. S. Walia, G. K. Shah, and S. M. Hariprasad, “ILM peeling a vital intervention for many vitreoretinal disorders,” Ophthalmic Surgery Lasers and Imaging Retina, vol. 45, no. 2, pp. 92–96, 2014. View at Publisher · View at Google Scholar · View at Scopus
  200. F. Pichi, A. Lembo, M. Morara et al., “Early and late inner retinal changes after inner limiting membrane peeling,” International Ophthalmology, vol. 34, no. 2, pp. 437–446, 2014. View at Publisher · View at Google Scholar · View at Scopus
  201. D. Tognetto, C. Haritoglou, A. Kampik, and G. Ravalico, “Macular edema and visual loss after macular pucker surgery with ICG-assisted internal limiting membrane peeling,” European Journal of Ophthalmology, vol. 15, no. 2, pp. 289–291, 2005. View at Google Scholar · View at Scopus
  202. M. Karacorlu, S. Karacorlu, and H. Ozdemir, “Iatrogenic punctate chorioretinopathy after internal limiting membrane peeling,” American Journal of Ophthalmology, vol. 135, no. 2, pp. 178–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  203. R. Tadayoni, M. Paques, P. Massin, S. Mouki-Benani, J. Mikol, and A. Gaudric, “Dissociated optic nerve fiber layer appearance of the fundus after idiopathic epiretinal membrane removal,” Ophthalmology, vol. 108, no. 12, pp. 2279–2283, 2001. View at Publisher · View at Google Scholar · View at Scopus
  204. H. Imai and K. Ohta, “Microperimetric determination of retinal sensitivity in areas of dissociated optic nerve fiber layer following internal limiting membrane peeling,” Japanese Journal of Ophthalmology, vol. 54, no. 5, pp. 435–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  205. M. Alkabes, C. Salinas, L. Vitale, A. Burés-Jelstrup, P. Nucci, and C. Mateo, “En face optical coherence tomography of inner retinal defects after internal limiting membrane peeling for idiopathic macular hole,” Investigative Ophthalmology and Visual Science, vol. 52, no. 11, pp. 8349–8355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. R. F. Spaide, ““Dissociated optic nerve fiber layer appearance” after internal limiting membrane removal is inner retinal dimpling,” Retina, vol. 32, no. 9, pp. 1719–1726, 2012. View at Publisher · View at Google Scholar · View at Scopus
  207. D. H. W. Steel, C. Dinah, M. Habib, and K. White, “ILM peeling technique influences the degree of a dissociated optic nerve fibre layer appearance after macular hole surgery,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 253, no. 5, pp. 691–698, 2015. View at Publisher · View at Google Scholar · View at Scopus
  208. Y. Mitamura and K. Ohtsuka, “Relationship of dissociated optic nerve fiber layer appearance to internal limiting membrane peeling,” Ophthalmology, vol. 112, no. 10, pp. 1766–1770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. D. Weinberger, H. Stiebel-Kalish, E. Priel, D. Barash, R. Axer-Siegel, and Y. Yassur, “Digital red-free photography for the evaluation of retinal blood vessel displacement in epiretinal membrane,” Ophthalmology, vol. 106, no. 7, pp. 1380–1383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  210. K. Kawano, Y. Ito, M. Kondo et al., “Displacement of foveal area toward optic disc after macular hole surgery with internal limiting membrane peeling,” Eye, vol. 27, no. 7, pp. 871–877, 2013. View at Publisher · View at Google Scholar · View at Scopus
  211. A. L. Sabater, Á. Velázquez-Villoria, M. A. Zapata et al., “Evaluation of macular retinal ganglion cell-inner plexiform layer thickness after vitrectomy with internal limiting membrane peeling for idiopathic macular holes,” BioMed Research International, vol. 2014, Article ID 458631, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  212. O. Sandali, M. El Sanharawi, E. Basli et al., “Paracentral retinal holes occurring after macular surgery: incidence, clinical features, and evolution,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 8, pp. 1137–1142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  213. A. Rubinstein, R. Bates, L. Benjamin, and A. Shaikh, “Iatrogenic eccentric full thickness macular holes following vitrectomy with ILM peeling for idiopathic macular holes,” Eye, vol. 19, no. 12, pp. 1333–1335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. T. C. Ho, C. M. Yang, J. S. Huang, C. H. Yang, and M. S. Chen, “Foveola nonpeeling internal limiting membrane surgery to prevent inner retinal damages in early stage 2 idiopathic macula hole,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 252, no. 10, pp. 1553–1560, 2014. View at Google Scholar
  215. J. Chung and R. Spaide, “Intraretinal silicone oil vacuoles after macular hole surgery with internal limiting membrane peeling,” The American Journal of Ophthalmology, vol. 136, no. 4, pp. 766–767, 2003. View at Publisher · View at Google Scholar · View at Scopus
  216. S. Tatlipinar and N. M. Yenerel, “Microbubble in the hole: a rare cause of failed macular hole surgery?” Retinal Cases and Brief Reports, vol. 7, no. 2, pp. 150–151, 2013. View at Publisher · View at Google Scholar · View at Scopus
  217. S. Natarajan, H. B. Mehta, S. K. Mahapatra, and S. Sharma, “A rare case of choroidal neovascularization following macular hole surgery,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 2, pp. 271–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. P. Rishi, M. Dhupper, and E. Rishi, “Can retinal microtrauma by internal limiting membrane peeling cause retinal angiomatosis proliferans?” Oman Journal of Ophthalmology, vol. 4, no. 3, pp. 144–146, 2011. View at Publisher · View at Google Scholar
  219. H. Tabandeh and W. E. Smiddy, “Choroidal neovascularization following macular hole surgery,” Retina, vol. 19, no. 5, pp. 414–417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  220. K. Nakata, M. Ohji, Y. Ikuno, S. Kusaka, F. Gomi, and Y. Tano, “Sub-retinal hemorrhage during internal limiting membrane peeling for a macular hole,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 241, no. 7, pp. 582–584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  221. A. K. H. Kwok, D. Y. L. Leung, C. Hon, and D. S. C. Lam, “Vision threatening vitreous haemorrhage after internal limiting membrane peeling in macular surgeries,” British Journal of Ophthalmology, vol. 86, no. 12, pp. 1449–1450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  222. V. Mester and F. Kuhn, “Internal limiting membrane removal in the management of full-thickness macular holes,” The American Journal of Ophthalmology, vol. 129, no. 6, pp. 769–777, 2000. View at Publisher · View at Google Scholar · View at Scopus
  223. N. Lois, J. Burr, J. Norrie et al., “Internal limiting membrane peeling versus no peeling for idiopathic full-thickness macular hole: a pragmatic randomized controlled trial,” Investigative Ophthalmology and Visual Science, vol. 52, no. 3, pp. 1586–1592, 2011. View at Publisher · View at Google Scholar · View at Scopus