Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2012 (2012), Article ID 105918, 19 pages
http://dx.doi.org/10.1155/2012/105918
Review Article

A Comprehensive Review of Hypertension in Pregnancy

1Division of Nephrology, Department of Medicine, State University of New York at Buffalo, Buffalo, NY 14215, USA
2Renal Department, Erie County Medical Center, Buffalo, NY 14215, USA

Received 18 January 2012; Accepted 12 March 2012

Academic Editor: Cees B. Oudejans

Copyright © 2012 Reem Mustafa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Roccella, “Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy,” American Journal of Obstetrics & Gynecology, vol. 183, no. 1, pp. S1–S22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. D. Lindheimer, “Introduction, history, controversies, and definitions,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 1–24, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  3. F. C. Luft, E. D. M. Gallery, and M. D. Lindheimer, “Normal and abnormal volume hemostasis,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 271–288, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  4. L. A. Simmons, A. G. Gillin, and R. W. Jeremy, “Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy,” American Journal of Physiology, vol. 283, no. 4, pp. H1627–H1633, 2002. View at Google Scholar · View at Scopus
  5. R. Abdul-Karim and N. S. Assali, “Pressor response to angiotensin in pregnant and nonpregnant women,” American Journal of Obstetrics & Gynecology, vol. 82, pp. 246–251, 1961. View at Google Scholar
  6. W. Gigee, W. Raab, G. Schroeder, and R. Wagner, “Vascular reactivity and electrolytes in normal and toxemic pregnancy; pathogenic considerations and a diagnostic pre-toxemia test,” The Journal of Clinical Endocrinology and Metabolism, vol. 16, no. 9, pp. 1196–1216, 1956. View at Google Scholar · View at Scopus
  7. N. F. Gant, G. L. Daley, S. Chand, P. J. Whalley, and P. C. MacDonald, “A study of angiotensin II pressor response throughout primigravid pregnancy,” The Journal of Clinical Investigation, vol. 52, pp. 2682–2652, 1973. View at Google Scholar
  8. J. M. Davison, “Overview: kidney function in pregnant women,” American Journal of Kidney Diseases, vol. 9, no. 4, pp. 248–252, 1987. View at Google Scholar · View at Scopus
  9. K. P. Conrad, L. W. Gaber, and M. D. Lindheimer, “The kidney in normal pregnancy and preeclampsia,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 301–340, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  10. L. C. Chesley, Hypothesis. Hypertensive Disorders in Pregnancy, Appleton-Century Crofts, New York, NY, USA, 1978.
  11. I. Agarwal and S. A. Karumanchi, “Preeclampsia and the anti-angiogenic state,” Pregnancy Hypertension, vol. 1, no. 1, pp. 17–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Venuto and M. D. Lindheimer, “Animal models,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 171–190, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  13. R. N. Taylor, S. T. Davidge, and J. M. Roberts, “Endothelial cell dysfunction and oxidative stress,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 145–170, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  14. S. E. Maynard, J. Y. Min, J. Merchan et al., “Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction hypertension, and proteinuria in preeclampsia,” The Journal of Clinical Investigation, vol. 111, no. 5, pp. 649–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Kendall and K. A. Thomas, “Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10705–10709, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Karumanchi, I. E. Stillman, and M. D. Lindheimer, “Angiogenesis and preeclampsia,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 87–104, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  17. R. J. Levine, S. E. Maynard, C. Qian et al., “Circulating angiogenic factors and the risk of preeclampsia,” The New England Journal of Medicine, vol. 350, no. 7, pp. 672–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Robinson, D. D. Johnson, E. Y. Chang, D. M. Armstrong, and W. Wang, “Evaluation of placenta growth factor and soluble Fms-like tyrosine kinase 1 receptor levels in mild and severe preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 195, no. 1, pp. 255–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Makris, C. Thornton, J. Thompson et al., “Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1,” Kidney International, vol. 71, no. 10, pp. 977–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Heydarian, T. McCaffrey, L. Florea et al., “Novel splice variants of sFlt1 are upregulated in preeclampsia,” Placenta, vol. 30, no. 3, pp. 250–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Garovic, “The role of angiogenic factors in the prediction and diagnosis of preeclampsia superimposed on chronic hypertension,” Hypertension, vol. 59, pp. 555–557, 2012. View at Google Scholar
  22. S. E. Maynard and S. A. Karunamachi, “Angiogenic factors and preeclampsia,” Seminars in Nephrology, vol. 31, pp. 33–46, 2011. View at Google Scholar
  23. J. S. Gilbert, S. A. Gilbert, M. Arany, and J. P. Granger, “Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression,” Hypertension, vol. 53, no. 2, pp. 399–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Gu, D. F. Lewis, and Y. Wang, “Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies,” The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 1, pp. 260–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. O. D. Sherwood, “Relaxin,” in The Physiology of Reproduction, E. Knobil, J. D. Neill, G. S. Grrenwald, C. L. Markert, and D. W. Pfaff, Eds., pp. 861–1008, Raven Press, New York, NY, USA, 1994. View at Google Scholar
  26. F. L. Hisaw, “Experimental relaxation of the public ligament of the guinea pig,” Proceedings of the Society for Experimental Biology and Medicine, vol. 23, pp. 661–663, 1926. View at Google Scholar
  27. H. K. Ziel and C. T. Sawin, “Frederick L. Hisaw (1891–1972) and the discovery of relaxin,” Endocrinologist, vol. 10, no. 4, pp. 215–218, 2000. View at Google Scholar · View at Scopus
  28. J. St-Louis and G. Massicotte, “Chronic decrease of blood pressure by rat relaxin in spontaneously hypertensive rats,” Life Sciences, vol. 37, no. 14, pp. 1351–1357, 1985. View at Publisher · View at Google Scholar · View at Scopus
  29. K. P. Conrad, D. O. Debrah, J. Novak, L. A. Danielson, and S. G. Shroff, “Relaxin modifies systemic arterial resistance and compliance in conscious, nonpregnant rats,” Endocrinology, vol. 145, no. 7, pp. 3289–3296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. D. O. Debrah, J. Novak, J. E. Matthews, R. J. Ramirez, S. G. Shroff, and K. P. Conrad, “Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats,” Endocrinology, vol. 147, no. 11, pp. 5126–5131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Debrah, A. Agoulnik, and K. P. Conrad, “Changes in arterial function by chronic relaxin infusion are mediated by the leucine rich repeat G coupled lgr7 receptor,” Reproductive Sciences, vol. 57, pp. 1151–1160, 2008. View at Google Scholar
  32. K. P. Conrad, “Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia,” Seminars in Nephrology, vol. 31, no. 1, pp. 15–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Jeyabalan, D. R. Stewart, S. C. McGonigal, R. W. Powers, and K. P. Conrad, “Low relaxin concentrations in the first trimester are associated with increased risk of developing preeclampsia,” Reproductive Sciences, vol. 16, article 101A, 2009. View at Google Scholar
  34. G. Wallukut, V. Homuth, T. Fisher et al., “Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor,” The Journal of Clinical Investigation, vol. 103, pp. 945–952, 1999. View at Google Scholar
  35. A. H. Siddiqui, R. A. Irani, S. C. Blackwell, S. M. Ramin, R. E. Kellems, and Y. Xia, “Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: correlation with disease severity,” Hypertension, vol. 55, no. 2, pp. 386–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Roberts, “Endothelial dysfunction in preeclampsia,” Seminars in Reproductive Endocrinology, vol. 16, pp. 5–15, 1998. View at Google Scholar
  37. J. M. Roberts, R. N. Taylor, T. J. Musci, G. M. Rodgers, C. A. Hubel, and M. K. McLaughin, “Preeclampsia: an endothelial cell disorder,” American Journal of Obstetrics & Gynecology, vol. 161, pp. 1200–1204, 1989. View at Google Scholar
  38. J. P. Granger, B. B. LaMarca, K. Cockrell et al., “Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia,” Methods in Molecular Medicine, vol. 122, pp. 383–392, 2006. View at Google Scholar · View at Scopus
  39. C. W. G. Redman, I. L. Sargent, and J. M. Roberts, “Immunology of normal pregnancy and preeclampsia,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 129–144, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  40. D. B. Carr, M. Epplein, C. O. Johnson, T. R. Easterling, and C. W. Critchlow, “A sister's risk: family history as a predictor of preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 193, no. 3, supplement, pp. 965–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. B. Carr, K. M. Newton, K. M. Utzschneider et al., “Preeclampsia and risk of developing subsequent diabetes preeclampsia and risk of subsequent diabetes,” Hypertension in Pregnancy, vol. 28, no. 4, pp. 435–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. K. Srinivas, A. C. Morrison, C. M. Andrela, and M. A. Elovitz, “Allelic variations in angiogenic pathway genes are associated with preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 202, no. 5, pp. 445.e1–445.e11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Mütze, S. Rudnik-Schöneborn, K. Zerres, and W. Rath, “Genes and the preeclampsia syndrome,” Journal of Perinatal Medicine, vol. 36, no. 1, pp. 38–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. Tuohy and D. K. James, “Pre-eclampsia and trisomy 13,” British Journal of Obstetrics and Gynaecology, vol. 99, no. 11, pp. 891–894, 1992. View at Google Scholar · View at Scopus
  45. R. T. Lie, S. Rasmussen, H. Brunborg, H. K. Gjessing, E. Lie-Nielsen, and L. M. Irgens, “Fetal and maternal contributions to risk of pre-eclampsia: population based study,” BMJ, vol. 316, no. 7141, pp. 1343–1347, 1998. View at Google Scholar · View at Scopus
  46. M. S. Esplin, M. B. Fausett, A. Fraser et al., “Paternal and maternal components of the predisposition to preeclampsia,” The New England Journal of Medicine, vol. 344, no. 12, pp. 867–872, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. J. S. Cnossen, K. C. Vollebregt, N. De Vrieze et al., “Accuracy of mean arterial pressure and blood pressure measurements in predicting pre-eclampsia: systematic review and meta-analysis,” BMJ, vol. 336, no. 7653, pp. 1117–1120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Robert, F. Sepandj, R. M. Liston, and K. C. Dooley, “Random protein-creatinine ratio for the quantitation of proteinuria in pregnancy,” Obstetrics & Gynecology, vol. 90, no. 6, pp. 893–895, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Sethuram, T. S. U. Kiran, and A. N. A. Weerakkody, “Is the urine spot protein/creatinine ratio a valid diagnostic test for pre-eclampsia?” Journal of Obstetrics and Gynaecology, vol. 31, no. 2, pp. 128–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. C. P. Price, R. G. Newall, and J. C. Boyd, “Use of protein: creatinine ratio measurements on random urine samples for prediction of significant proteinuria: a systematic review,” Clinical Chemistry, vol. 51, no. 9, pp. 1577–1586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Rodriguez-Thompson and E. S. Leiberman, “Use of random urinary protein to creatinine ratio for the diagnosis of significant proteinuria during pregnancy,” American Journal of Obstetrics & Gynecology, vol. 185, pp. 808–811, 1995. View at Google Scholar
  52. P. Moran, M. D. Lindheimer, and J. M. Davison, “The renal response to preeclampsia,” Seminars in Nephrology, vol. 24, no. 6, pp. 588–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J. S. Cnossen, H. de Ruyter-Hanhijarvi, J. A. van der Post, B. W. Mol, K. S. Khan, and G. ter Riet, “Accuracy of serum uric acid determination in predicting pre-eclampsia: a systematic review,” Acta Obstetricia et Gynecologica Scandinavica, vol. 85, pp. 519–525, 2006. View at Google Scholar
  54. S. Thangaratinam, K. M. K. Ismail, S. Sharp, A. Coomarasamy, and K. S. Khan, “Accuracy of serum uric acid in predicting complications of pre-eclampsia: a systematic review,” International Journal of Obstetrics & Gynaecology, vol. 113, no. 4, pp. 369–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Koopmans, M. G. van Pampus, H. Groen, J. G. Aarnoudse, P. P. van den berg, and B. W. Mol, “Accuracy of serum uric acid as a predictive test for maternal complications in preeclampsia: bivariate meta-analysis and decision analysis,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 146, no. 1, pp. 8–14, 2009. View at Google Scholar
  56. S. K. Laughon, J. Catov, R. W. Powers, J. M. Roberts, and R. E. Gandley, “First trimester uric acid and adverse pregnancy outcomes,” American Journal of Hypertension, vol. 24, no. 4, pp. 489–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. A. Taufield, K. L. Ales, L. M. Resnick et al., “Hypocalciuria in preeclampsia,” The New England Journal of Medicine, vol. 317, no. 14, pp. 897–899, 1987. View at Google Scholar · View at Scopus
  58. G. A. Dekker, J. W. Makovitz, and H. C. S. Wallenburg, “Prediction of pregnancy-induced hypertensive disorders by angiotensin II sensitivity and supine pressor test,” British Journal of Obstetrics and Gynaecology, vol. 97, no. 9, pp. 817–821, 1990. View at Google Scholar · View at Scopus
  59. N. F. Gant, S. Chand, R. J. Worley, P. J. Whalley, U. D. Crosby, and P. C. MacDonald, “A clinical test useful for predicting the development of acute hypertension in pregnancy,” American Journal of Obstetrics & Gynecology, vol. 120, pp. 1–7, 1974. View at Google Scholar
  60. A. Conde-Agudelo, R. Romero, and M. D. Lindheimer, “Tests to predict preeclampsia,” in Chesley's Hypertensive Disorders in Pregnancy, M. D. Lindheimer, F. G. Cunningham, and J. M. Roberts, Eds., pp. 191–214, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2009. View at Google Scholar
  61. P. F. W. Chien, N. Arnott, A. Gordon, P. Owen, and K. S. Khan, “How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview,” British Journal of Obstetrics and Gynaecology, vol. 107, no. 2, pp. 196–208, 2000. View at Google Scholar · View at Scopus
  62. S. Grill, C. Rusterholz, R. Zanetti-Dällenbach et al., “Potential markers of preeclampsia—a review,” Reproductive Biology and Endocrinology, vol. 7, article 70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. R. Barton and B. M. Sibai, “Prediction and prevention of recurrent preeclampsia,” Obstetrics & Gynecology, vol. 112, no. 2, pp. 359–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Stepan, A. Unversucht, N. Wessel, and R. Faber, “Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion,” Hypertension, vol. 49, no. 4, pp. 818–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Stepan, A. Geipel, F. Schwarz, T. Kramer, N. Wessel, and R. Faber, “Circulatory soluble endoglin and its predictive value in second trimester pregnancies with abnormal uterine perfusion,” American Journal of Obstetrics & Gynecology, vol. 21, pp. 279–287, 2008. View at Google Scholar
  66. R. J. Levine, S. E. Maynard, C. Qian et al., “Circulating angiogenic factors and the risk of preeclampsia,” The New England Journal of Medicine, vol. 350, no. 7, pp. 672–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. G. C. McKeeman, J. E. S. Ardill, C. M. Caldwell, A. J. Hunter, and N. McClure, “Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop,” American Journal of Obstetrics & Gynecology, vol. 191, no. 4, pp. 1240–1246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Chaiworapongsa, R. Romero, Y. M. Kim et al., “Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 17, no. 1, pp. 3–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Sunderji, E. Gaziano, D. Wothe et al., “Automated assays for sVEGF R1 and PIGF as an aid in the diagnosis of preterm preeclampsia: a prospecttive clinical study,” American Journal of Obstetrics & Gynecology, vol. 202, no. 1, pp. 40–47, 2010. View at Google Scholar
  70. A. De Vivo, G. Baviera, D. Giordano et al., “Endoglin, PIGF and sFlt-1 as markers for predicting preeclampsia,” Acta Obstetricia et Gynecologica Scandinavica, vol. 87, no. 8, pp. 837–842, 2008. View at Google Scholar
  71. H. Stepan, A. Unversucht, N. Wessel, and R. Faber, “Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion,” Hypertension, vol. 49, no. 4, pp. 818–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Widmer, J. Villar, A. Benigni, A. Conde-Agudelo, S. A. Karumanchi, and M. Lindheimer, “Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review,” Obstetrics & Gynecology, vol. 109, no. 1, pp. 168–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Hadker, S. Garg, C. Costanzo et al., “Financial impact of a novel pre-eclampsia diagnostic test versus standard practice:a decision- analytic modeling analysis from a UK health care payer prospective,” Journal of Medical Economics, vol. 13, no. 4, pp. 728–737, 2010. View at Google Scholar
  74. R. J. Levine, C. Lam, C. Qian et al., “Soluble endoglin and other circulating antiangiogenic factors in preeclampsia,” The New England Journal of Medicine, vol. 355, no. 10, pp. 992–1005, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. J. Robinson and D. D. Johnson, “Soluble endoglin as a second-trimester marker for preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 197, no. 2, pp. 174.e1–174.e5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. S. E. Maynard, T. A. Moore Simas, L. Bur, S. L. Crawford, M. J. Solitro, and B. A. Meyer, “Soluble endoglin for the prediction of preeclampsia in a high risk cohort,” Hypertension in Pregnancy, vol. 29, no. 3, pp. 330–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. H. M. Ryu, J. H. Lim, S. Y. Kim, S. Y. Park, J. H. Yang, and M. Y. Kim, “Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors,” Obstetrics & Gynecology, vol. 111, no. 6, pp. 1403–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Thadhani, T. Kisner, H. Hagmann et al., “Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia,” Circulation, vol. 124, pp. 940–950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. J. C. Livingston, L. W. Livingston, R. Ramsey, B. C. Mabie, and B. M. Sibai, “Magnesium sulfate in women with mild preeclampsia: a randomized controlled trial,” Obstetrics & Gynecology, vol. 101, no. 2, pp. 217–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. A. P. Mackay, C. J. Berg, and H. K. Atrash, “Pregnancy-related mortality from preeclampsia and eclampsia,” Obstetrics & Gynecology, vol. 97, no. 4, pp. 533–538, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. A. R. Heard, G. A. Dekker, A. Chan, D. J. Jacobs, S. A. Vreeburg, and K. R. Priest, “Hypertension during pregnancy in South Australia, Part 1: pregnancy outcomes,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 44, no. 5, pp. 404–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. C. Hauth, M. G. Ewell, R. J. Levine et al., “Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group,” Obstetrics & Gynecology, vol. 95, pp. 24–28, 2000. View at Google Scholar
  83. B. M. Sibai, B. Mercer, and C. Sarinoglu, “Severe preeclampsia in the second trimester: recurrence risk and long-term prognosis,” American Journal of Obstetrics & Gynecology, vol. 165, no. 5, pp. 1408–1412, 1991. View at Google Scholar · View at Scopus
  84. B. M. Sibai, A. El-Nazer, and A. Gonzalez-Ruiz, “Severe preeclampsia-eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis,” American Journal of Obstetrics & Gynecology, vol. 155, no. 5, pp. 1011–1016, 1986. View at Google Scholar · View at Scopus
  85. B. M. Sibai, C. Sarinoglu, and B. M. Mercer, “Eclampsia. VII. Pregnancy outcome after eclampsia and long-term prognosis,” American Journal of Obstetrics & Gynecology, vol. 166, pp. 1757–1763, 1992. View at Google Scholar
  86. D. Mostello, D. Kallogjeri, R. Tungsiripat, and T. Leet, “Recurrence of preeclampsia: effects of gestational age at delivery of the first pregnancy, body mass index, paternity, and interval between births,” American Journal of Obstetrics & Gynecology, vol. 199, no. 1, pp. 55.e1–55.e7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. D. M. Campbell, I. MacGillivray, and R. Carr-Hill, “Pre-eclampsia in second pregnancy,” British Journal of Obstetrics and Gynaecology, vol. 92, no. 2, pp. 131–140, 1985. View at Google Scholar · View at Scopus
  88. L. Trogstad, A. Skrondal, C. Stoltenberg, P. Magnus, B. I. Nesheim, and A. Eskild, “Recurrence risk of preeclampsia in twin and singleton pregnancies,” American Journal of Medical Genetics, vol. 126, no. 1, pp. 41–45, 2004. View at Google Scholar · View at Scopus
  89. L. Bellamy, J. P. Casas, A. D. Hingorani, and D. J. Williams, “Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis,” BMJ, vol. 335, no. 7627, pp. 974–977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. K. H. Lampinen, M. Rönnback, R. J. Kaaja, and P. H. Groop, “Impaired vascular dilatation in women with a history of pre-eclampsia,” Journal of Hypertension, vol. 24, no. 4, pp. 751–756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. J. C. Chambers, L. Fusi, I. S. Malik, D. O. Haskard, M. De Swiet, and J. S. Kooner, “Association of maternal endothelial dysfunction with preeclampsia,” JAMA, vol. 285, no. 12, pp. 1607–1612, 2001. View at Google Scholar · View at Scopus
  92. P. K. Agatisa, R. B. Ness, J. M. Roberts, J. P. Costantino, L. H. Kuller, and M. K. McLaughlin, “Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk,” American Journal of Physiology, vol. 286, no. 4, pp. H1389–H1393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. R. J. Kaaja and M. K. Pöyhönen-Alho, “Insulin resistance and sympathetic overactivity in women,” Journal of Hypertension, vol. 24, no. 1, pp. 131–141, 2006. View at Google Scholar · View at Scopus
  94. R. J. Kaaja and I. A. Greer, “Manifestations of chronic disease during pregnancy,” JAMA, vol. 294, no. 21, pp. 2751–2757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. B. E. Vikse, L. M. Irgens, T. Leivestad, R. Skjærven, and B. M. Iversen, “Preeclampsia and the risk of end-stage renal disease,” The New England Journal of Medicine, vol. 359, no. 8, pp. 800–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. K. M. Aagaard-Tillery, G. J. Stoddard, C. Holmgren et al., “Preeclampsia and subsequent risk of cancer in Utah,” American Journal of Obstetrics & Gynecology, vol. 195, no. 3, pp. 691–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. L. J. Vatten, P. R. Romundstad, D. Trichopoulos, and R. Skjærven, “Pre-eclampsia in pregnancy and subsequent risk for breast cancer,” British Journal of Cancer, vol. 87, no. 9, pp. 971–973, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. I. Mogren, H. Stenlund, and U. Högberg, “Long-term impact of reproductive factors on the risk of cervical, endometrial, ovarian and breast cancer,” Acta Oncologica, vol. 40, no. 7, pp. 849–854, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. B. A. Cohn, P. M. Cirillo, R. E. Christianson, B. J. Van Den Berg, and P. K. Siiteri, “Placental characteristics and reduced risk of maternal breast cancer,” Journal of the National Cancer Institute, vol. 93, no. 15, pp. 1133–1140, 2001. View at Google Scholar · View at Scopus
  100. E. W. Seely and J. Ecker, “Chronic hypertension in pregnancy,” The New England Journal of Medicine, vol. 365, no. 5, pp. 439–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Abalos, L. Duley, D. W. Steyn, and D. J. Henderson-Smart, “Antihypertensive drug therapy for mild to moderate hypertension during pregnancy,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD002252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. B. M. Sibai, “Chronic hypertension in pregnancy,” Obstetrics & Gynecology, vol. 100, pp. 369–377, 2002. View at Google Scholar
  103. G. K. Davis, C. Mackenzie, M. A. Brown et al., “Predicting transformation from gestational hypertension to preeclampsia in clinical practice: a possible role for 24 hour ambulatory blood pressure monitoring,” Hypertension in Pregnancy, vol. 26, no. 1, pp. 77–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. R. Barton, J. M. O'Brien, N. K. Bergauer, D. L. Jacques, and B. M. Sibai, “Mild gestational hypertension remote from term: progression and outcome,” American Journal of Obstetrics & Gynecology, vol. 184, pp. 979–983, 2001. View at Google Scholar
  105. M. E. Helewa, R. F. Burrows, J. Smith, K. Williams, P. Brain, and S. W. Rabkin, “Report of the Canadian Hypertension Society Consensus Conference: 1. Definitions, evaluation and classification of hypertensive disorders in pregnancy,” CMAJ, vol. 157, no. 6, pp. 715–725, 1997. View at Google Scholar · View at Scopus
  106. L. A. Magee, “Diagnosis, evaluation and management of the hypertensive disorders of pregnancy,” American Journal of Obstetrics & Gynecology, vol. 30, supplement, pp. S1–S48, 2008. View at Google Scholar
  107. E. Rey, J. LeLorier, E. Burgess, I. R. Lange, and L. Leduc, “Report of the Canadian Hypertension Society Consensus Conference: 3. Pharmacologic treatment of hypertensive disorders in pregnancy,” CMAJ, vol. 157, no. 9, pp. 1245–1254, 1997. View at Google Scholar · View at Scopus
  108. T. Podymow and P. August, “Update on the use of antihypertensive drugs in pregnancy,” Hypertension, vol. 51, no. 4, pp. 960–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. C. W. Redman, L. J. Beilin, and J. Bonnar, “Treatment of hypertension in pregnancy with methyldopa: blood pressure control and side effects,” British Journal of Obstetrics and Gynaecology, vol. 84, pp. 419–426, 1977. View at Google Scholar
  110. S. Montan, C. Anandakumar, S. Arulkumaran, I. Ingemarsson, and S. S. Ratnam, “Effects of methyldopa on uteroplacental and fetal hemodynamics in pregnancy-induced hypertension,” American Journal of Obstetrics & Gynecology, vol. 168, pp. 152–156, 1993. View at Google Scholar
  111. J. S. Horvath, A. Phippard, A. Korda, D. J. Henderson-Smart, A. Child, and D. J. Tiller, “Clonidine hydrochloride—a safe and effective antihypertensive agent in pregnancy,” Obstetrics & Gynecology, vol. 66, pp. 634–638, 1985. View at Google Scholar
  112. H. J. Huisjes, M. Hadders-Algra, and B. C. L. Touwen, “Is clonidine a behavioural teratogen in the human?” Early Human Development, vol. 14, no. 1, pp. 43–48, 1986. View at Google Scholar · View at Scopus
  113. L. Butters, S. Kennedy, and P. C. Rubin, “Atenolol in essential hypertension during pregnancy,” BMJ, vol. 301, no. 6752, pp. 587–589, 1990. View at Google Scholar · View at Scopus
  114. G. Y. H. Lip, M. Beevers, D. Churchill, L. M. Shaffer, and D. G. Beevers, “Effect of atenolol on birth weight,” American Journal of Cardiology, vol. 79, no. 10, pp. 1436–1438, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Reynolds, L. Butters, J. Evans, T. Adams, and P. C. Rubin, “First year of life after the use of atenolol in pregnancy associated hypertension,” Archives of Disease in Childhood, vol. 59, pp. 1061–1063, 1984. View at Google Scholar
  116. C. J. Pickles, E. M. Symonds, and F. Broughton Pipkin, “The fetal outcome in a randomized double-blind controlled trial of labetalol versus placebo in pregnancy-induced hypertension,” British Journal of Obstetrics and Gynaecology, vol. 96, pp. 38–43, 1989. View at Google Scholar
  117. B. M. Sibai, A. R. Gonzalez, W. C. Mabie, and M. Moretti, “A comparison of labetalol plus hospitalization versus hospitalization alone in the management of preeclampsia remote from term,” Obstetrics & Gynecology, vol. 70, pp. 323–327, 1987. View at Google Scholar
  118. R. Venuto, P. Burstein, and R. Schneider, “Pheochromocytoma: antepartum diagnosis and management with tumor resection in the puerperium,” American Journal of Obstetrics & Gynecology, vol. 150, pp. 431–432, 1984. View at Google Scholar
  119. S. Grodski, C. Jung, P. Kertes, M. Davies, and S. Banting, “Phaeochromocytoma in pregnancy,” Internal Medicine Journal, vol. 36, no. 9, pp. 604–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. L. A. Magee, B. Schick, A. E. Donnenfeld et al., “The safety of calcium channel blockers in human pregnancy: a prospective, multicenter cohort study,” American Journal of Obstetrics & Gynecology, vol. 174, pp. 823–828, 1996. View at Google Scholar
  121. S. W. Lindow, N. Davies, D. A. Davey, and J. A. Smith, “The effect of sublingual nifedipine on uteroplacental blood flow in hypertensive pregnancy,” British Journal of Obstetrics and Gynaecology, vol. 95, pp. 1276–1281, 1988. View at Google Scholar
  122. G. Rizzo, D. Arduini, S. Mancuso, and C. Romanini, “Effects of nifedipine on umbilical artery velocity waveforms in healthy human fetuses,” Gynecologic and Obstetric Investigation, vol. 24, pp. 151–154, 1987. View at Google Scholar
  123. L. Impey, “Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks,” British Journal of Obstetrics and Gynaecology, vol. 100, pp. 959–961, 1993. View at Google Scholar
  124. M. S. Puzey, K. L. Ackovic, S. W. Lindow, and R. Gonin, “The effect of nifedipine on fetal umbilical artery Doppler waveforms in pregnancies complicated by hypertension,” South African Medical Journal, vol. 79, no. 4, pp. 192–194, 1991. View at Google Scholar · View at Scopus
  125. M. A. Brown, M. L. Buddle, T. Farrell, and G. K. Davis, “Efficacy and safety of nifedipine tablets for the acute treatment of severe hypertension in pregnancy,” American Journal of Obstetrics & Gynecology, vol. 187, pp. 1046–1050, 2002. View at Google Scholar
  126. R. Collins, S. Yusuf, and R. Peto, “Overview of randomised trials of diuretics in pregnancy,” British Medical Journal, vol. 290, no. 6461, pp. 17–23, 1985. View at Google Scholar · View at Scopus
  127. L. A. Magee, “Drugs in pregnancy. Antihypertensives,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 15, pp. 827–845, 2001. View at Google Scholar
  128. T. D. Groves and B. Corenblum, “Spironolactone therapy during human pregnancy,” American Journal of Obstetrics & Gynecology, vol. 172, pp. 1655–1656, 1995. View at Google Scholar
  129. E. Widerlov, I. Karlman, and J. Storsater, “Hydralazine-induced neonatal thrombocytopenia,” The New England Journal of Medicine, vol. 303, no. 21, article 1235, 1980. View at Google Scholar · View at Scopus
  130. L. A. Magee, C. Cham, E. J. Waterman, A. Ohlsson, and P. Von Dadelszen, “Hydralazine for treatment of severe hypertension in pregnancy: meta-analysis,” BMJ, vol. 327, no. 7421, pp. 955–960, 2003. View at Google Scholar · View at Scopus
  131. O. Nevo, I. Thaler, V. Shik, T. Vortman, and J. F. Soustiel, “The effect of isosorbide dinitrate , a donor of nitric acid, on maternal cerebral blood flow in gestational hypertension and preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 188, pp. 1360–1365, 2003. View at Google Scholar
  132. N. Wasserstrum, “Nitroprusside in preeclampsia: circulatory distress and paradoxical bradycardia,” Hypertension, vol. 18, no. 1, pp. 79–84, 1991. View at Google Scholar · View at Scopus
  133. A. C. Bolte, H. P. van Geijn, and G. A. Dekker, “Pharmacological treatment of severe hypertension in pregnancy and the role of serotonin(2)-receptor blockers,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 95, pp. 22–36, 2001. View at Google Scholar
  134. D. W. Steyn and H. J. Odendaal, “Serotonin antagonism and serotonin antagonists in pregnancy: role of ketanserin,” Obstetrical & Gynecological Survey, vol. 55, pp. 582–589, 2000. View at Google Scholar
  135. P. G. Pryde, A. B. Sedman, C. E. Nugent, and M. Barr, “Angiotensin-converting enzyme inhibitor fetopathy,” Journal of the American Society of Nephrology, vol. 3, no. 9, pp. 1575–1582, 1993. View at Google Scholar · View at Scopus
  136. H. S. Buttar, “An overview of the influence of ACE inhibitors on fetal-placental circulation and perinatal development,” Molecular and Cellular Biochemistry, vol. 176, no. 1-2, pp. 61–71, 1997. View at Publisher · View at Google Scholar · View at Scopus
  137. W. O. Cooper, S. Hernandez-Diaz, P. G. Arbogast et al., “Major congenital malformations after first-trimester exposure to ACE inhibitors,” The New England Journal of Medicine, vol. 354, no. 23, pp. 2443–2451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. L. K. Tan and M. De Swiet, “The management of postpartum hypertension,” International Journal of Obstetrics & Gynaecology, vol. 109, no. 7, pp. 733–736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Makris, C. Thornton, and A. Hennessy, “Postpartum hypertension and nonsteroidal analgesia,” American Journal of Obstetrics & Gynecology, vol. 190, pp. 577–578, 2004. View at Google Scholar
  140. H. Atkinson and E. J. Begg, “Concentrations of beta-blocking drugs in human milk,” Journal of Pediatrics, vol. 116, no. 1, article 156, 1990. View at Google Scholar · View at Scopus
  141. W. B. White, “Management of hypertension during lactation,” Hypertension, vol. 6, no. 3, pp. 297–300, 1984. View at Google Scholar · View at Scopus
  142. R. A. Ehrenkranz, B. A. Ackerman, and J. D. Hulse, “Nifedipine transfer into human milk,” Journal of Pediatrics, vol. 114, no. 3, pp. 478–480, 1989. View at Google Scholar · View at Scopus
  143. R. M. Ward, B. A. Bates, W. E. Benitz et al., “The transfer of drugs and other chemicals into human milk,” Pediatrics, vol. 108, no. 3, pp. 776–789, 2001. View at Google Scholar · View at Scopus