Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2012, Article ID 638476, 8 pages
http://dx.doi.org/10.1155/2012/638476
Review Article

The Long and Short of It: The Role of Telomeres in Fetal Origins of Adult Disease

1Department of Physiology and Pharmacology, University of Western Ontario, Ontario, London, ON, Canada N6A 5C1
2Department of Obstetrics and Gynaecology, University of Western Ontario, Ontario, London, ON, Canada N6H 5W9
3Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada N6C 2V5

Received 7 April 2012; Accepted 24 August 2012

Academic Editor: Mark Nijland

Copyright © 2012 Stephanie E. Hallows et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Wardlaw, A. Blanc, J. Zupan, and E. Ahman, Low Birth Weight: Country, Regional and Global Estimates, World Health Organization, 2004.
  2. D. Brodsky and H. Christou, “Current concepts in intrauterine growth restriction,” Journal of Intensive Care Medicine, vol. 19, no. 6, pp. 307–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Pijnenborg, L. Vercruysse, and M. Hanssens, “The uterine spiral arteries in human pregnancy: facts and controversies,” Placenta, vol. 27, no. 9-10, pp. 939–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Y. Khong, F. De Wolf, W. B. Robertson, and I. Brosens, “Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants,” BJOG, vol. 93, no. 10, pp. 1049–1059, 1986. View at Google Scholar · View at Scopus
  5. T. R. H. Regnault, B. de Vrijer, H. L. Galan, R. B. Wilkening, F. C. Battaglia, and G. Meschia, “Development and mechanisms of fetal hypoxia in severe fetal growth restriction,” Placenta, vol. 28, no. 7, pp. 714–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. M. Mayhew, R. Manwani, C. Ohadike, J. Wijesekara, and P. N. Baker, “The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances,” Placenta, vol. 28, no. 2-3, pp. 233–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Resnik, “Intrauterine growth restriction,” Obstetrics and Gynecology, vol. 99, no. 3, pp. 490–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Marconi, C. L. Paolini, L. Stramare et al., “Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted pregnancies,” Pediatric Research, vol. 46, no. 1, pp. 114–119, 1999. View at Google Scholar · View at Scopus
  9. C. L. Paolini, A. M. Marconi, S. Ronzoni et al., “Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5427–5432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. P. J. Thureen, K. A. Trembler, G. Meschia, E. L. Makowski, and R. B. Wilkening, “Placental glucose transport in heat-induced fetal growth retardation,” American Journal of Physiology, vol. 263, no. 3, pp. R578–R585, 1992. View at Google Scholar · View at Scopus
  11. G. Alvino, V. Cozzi, T. Radaelli, H. Ortega, E. Herrera, and I. Cetin, “Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia,” Pediatric Research, vol. 64, no. 6, pp. 615–620, 2008. View at Google Scholar · View at Scopus
  12. V. A. Rodie, M. J. Caslake, F. Stewart et al., “Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies complicated by pre-eclampsia and intrauterine growth restriction,” Atherosclerosis, vol. 176, no. 1, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Verkauskiene, J. Beltrand, O. Claris et al., “Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age,” European Journal of Endocrinology, vol. 157, no. 5, pp. 605–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. Widdowson, D. E. Crabb, and R. D. Milner, “Cellular development of some human organs before birth,” Archives of Disease in Childhood, vol. 47, no. 254, pp. 652–655, 1972. View at Google Scholar · View at Scopus
  15. M. L. Hediger, M. D. Overpeck, R. J. Kuczmarski, A. McGlynn, K. R. Maurer, and W. W. Davis, “Muscularity and fatness of infants and young children born small- or large-for-gestational-age,” Pediatrics, vol. 102, no. 5, article E60, 1998. View at Google Scholar · View at Scopus
  16. L. Ibáñez, K. Ong, D. B. Dunger, and F. De Zegher, “Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2153–2158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. J. Ravelli, J. H. P. Van Der Meulen, R. P. J. Michels et al., “Glucose tolerance in adults after prenatal exposure to famine,” The Lancet, vol. 351, no. 9097, pp. 173–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. P. Barker, “Adult consequences of fetal growth restriction,” Clinical Obstetrics and Gynecology, vol. 49, no. 2, pp. 270–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. D. Mcintire, S. L. Bloom, B. M. Casey, and K. J. Leveno, “Birth weight in relation to morbidity and mortality among newborn infants,” The New England Journal of Medicine, vol. 340, no. 16, pp. 1234–1238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. P. Barker, C. Osmond, J. Golding, D. Kuh, and M. E. J. Wadsworth, “Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease,” BMJ, vol. 298, no. 6673, pp. 564–567, 1989. View at Google Scholar · View at Scopus
  21. D. J. P. Barker, A. R. Bull, C. Osmond, and S. J. Simmonds, “Fetal and placental size and risk of hypertension in adult life,” BMJ, vol. 301, no. 6746, pp. 259–262, 1990. View at Google Scholar · View at Scopus
  22. S. E. Ozanne, “Metabolic programming in animals,” British Medical Bulletin, vol. 60, pp. 143–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. R. Thorn, P. J. Rozance, L. D. Brown, and W. W. Hay, “The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes,” Seminars in Reproductive Medicine, vol. 29, no. 3, pp. 225–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. P. Barker, “Fetal origins of coronary heart disease,” BMJ, vol. 311, no. 6998, pp. 171–174, 1995. View at Google Scholar · View at Scopus
  25. C. N. Hales and D. J. P. Barker, “The thrifty phenotype hypothesis,” British Medical Bulletin, vol. 60, pp. 5–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. M. Vuguin, “Animal models for small for gestational age and fetal programing of adult disease,” Hormone Research, vol. 68, no. 3, pp. 113–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. D. Nüsken, H. Schneider, C. Plank et al., “Fetal programming of gene expression in growth-restricted rats depends on the cause of low birth weight,” Endocrinology, vol. 152, no. 4, pp. 1327–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Hewitt, D. Jurk, F. D. M. Marques et al., “2012Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence,” Nature Communications, vol. 3, article 708, 2012. View at Google Scholar
  29. E. H. Blackburn, “Structure and function of telomeres,” Nature, vol. 350, no. 6319, pp. 569–573, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. R. J. O'Sullivan and J. Karlseder, “Telomeres: protecting chromosomes against genome instability,” Nature Reviews Molecular Cell Biology, vol. 11, no. 3, pp. 171–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Belgiovine, I. Chiodi, and C. Mondello, “Telomerase: cellular immortalization and neoplastic transformation. Multiple functions of a multifaceted complex,” Cytogenetic and Genome Research, vol. 122, no. 3-4, pp. 255–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Hayflick and P. S. Moorhead, “The serial cultivation of human diploid cell strains,” Experimental Cell Research, vol. 25, no. 3, pp. 585–621, 1961. View at Google Scholar · View at Scopus
  33. C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres shorten during ageing of human fibroblasts,” Nature, vol. 345, no. 6274, pp. 458–460, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. F. D'Adda Di Fagagna, P. M. Reaper, L. Clay-Farrace et al., “A DNA damage checkpoint response in telomere-initiated senescence,” Nature, vol. 426, no. 6963, pp. 194–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Takai, A. Smogorzewska, and T. De Lange, “DNA damage foci at dysfunctional telomeres,” Current Biology, vol. 13, no. 17, pp. 1549–1556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bekaert, T. De Meyer, and P. Van Oostveldt, “Telomere attrition as ageing biomarker,” Anticancer Research, vol. 25, no. 4, pp. 3011–3022, 2005. View at Google Scholar · View at Scopus
  37. M. T. Hemann, M. A. Strong, L. Y. Hao, and C. W. Greider, “The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability,” Cell, vol. 107, no. 1, pp. 67–77, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Cong and J. W. Shay, “Actions of human telomerase beyond telomeres,” Cell Research, vol. 18, no. 7, pp. 725–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Gordon and J. H. Santos, “The emerging role of telomerase reverse transcriptase in mitochondrial DNA metabolism,” Journal of Nucleic Acids, vol. 2010, Article ID 390791, 7 pages, 2010. View at Publisher · View at Google Scholar
  40. S. Ahmed, J. F. Passos, M. J. Birket et al., “Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress,” Journal of Cell Science, vol. 121, no. 7, pp. 1046–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Chen, C. T. Chu, S. C. Huang, S. N. Chow, and C. Y. Hsieh, “Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies,” Human Reproduction, vol. 17, no. 2, pp. 463–468, 2002. View at Google Scholar · View at Scopus
  42. H. Chen, W. Wang, Y. Mo et al., “Women with high telomerase activity in luteinised granulosa cells have a higher pregnancy rate during in vitro fertilisation treatment,” Journal of Assisted Reproduction and Genetics, vol. 28, pp. 797–780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Y. Kim, S. P. Lee, J. S. Lee, S. J. Yoon, G. Jun, and Y. J. Hwang, “Telomerase and apoptosis in the placental trophoblasts of growth discordant twins,” Yonsei Medical Journal, vol. 47, no. 5, pp. 698–705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Davy, M. Nagata, P. Bullard, N. S. Fogelson, and R. Allsopp, “Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta,” Placenta, vol. 30, no. 6, pp. 539–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. V. A. Luyckx, C. A. Compston, T. Simmen, and T. F. Mueller, “Accelerated senescence in kidneys of low-birth-weight rats after catch-up growth,” American Journal of Physiology, vol. 297, no. 6, pp. F1697–F1705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. L. Tarry-Adkins, M. S. Martin-Gronert, J. H. Chen, R. L. Cripps, and S. E. Ozanne, “Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats,” The FASEB Journal, vol. 22, no. 6, pp. 2037–2044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. L. Tarry-Adkins, J. H. Chen, N. S. Smith, R. H. Jones, H. Cherif, and S. E. Ozanne, “Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets,” The FASEB Journal, vol. 23, no. 5, pp. 1521–1528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Liu, M. A. Blasco, J. R. Trimarchi, and D. L. Keefe, “An essential role for functional telomeres in mouse germ cells during fertilization and early development,” Developmental Biology, vol. 249, no. 1, pp. 74–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. J. T. Engelbregt, M. M. van Weissenbruch, C. Popp-Snijders, and H. A. Delemarre-van de Waal, “Delayed first cycle in intrauterine growth-retarted and postnatally undernourished female rats: follicular growth and ovulation after stimulation with pregnant mare serum gonadotropin at first cycle,” Journal of Endocrinology, vol. 173, no. 2, pp. 297–304, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Da Silva-Buttkus, R. van den Hurk, E. R. te Velde, and M. A. M. Taverne, “Ovarian development in intrauterine growth-retarded and normally developed piglets originating from the same litter,” Reproduction, vol. 126, no. 2, pp. 249–258, 2003. View at Google Scholar · View at Scopus
  51. P. Da Silva, R. P. Aitken, S. M. Rhind, P. A. Racey, and J. M. Wallace, “Impact of maternal nutrition during pregnancy on pituitary gonadotrophin gene expression and ovarian development in growth-restricted and normally grown late gestation sheep fetuses,” Reproduction, vol. 123, no. 6, pp. 769–777, 2002. View at Google Scholar · View at Scopus
  52. A. B. Bernal, M. H. Vickers, M. B. Hampton, R. A. Poynton, and D. M. Sloboda, “Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring,” PLoS ONE, vol. 5, no. 12, Article ID e15558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. A. Brenner, Y. M. Wolny, R. R. Adler, and J. Cohen, “Alternative splicing of the telomerase catalytic subunit in human oocytes and embryos,” Molecular Human Reproduction, vol. 5, no. 9, pp. 845–850, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. D. H. Betts and W. A. King, “Telomerase activity and telomere detection during early bovine development,” Developmental Genetics, vol. 25, no. 4, pp. 397–403, 1999. View at Google Scholar · View at Scopus
  55. S. Bekaert, H. Derradji, and S. Baatout, “Telomere biology in mammalian germ cells and during development,” Developmental Biology, vol. 274, no. 1, pp. 15–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Liu, S. Franco, B. Spyropoulos, P. B. Moens, M. A. Blasco, and D. L. Keefe, “Irregular telomeres impair meiotic synapsis and recombination in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6496–6501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. D. L. Keefe, L. Liu, and K. Marquard, “Telomeres and aging-related meiotic dysfunction in women,” Cellular and Molecular Life Sciences, vol. 64, no. 2, pp. 139–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Hassold and P. Hunt, “To err (meiotically) is human: the genesis of human aneuploidy,” Nature Reviews Genetics, vol. 2, no. 4, pp. 280–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. J. A. Johnson and S. Tough, “Delayed child-bearing,” JOGC, vol. 34, pp. 80–93, 2012. View at Google Scholar
  60. L. Liu, J. R. Trimarchi, P. J. Smith, and D. L. Keefe, “Mitochondrial dysfunction leads to telomere attrition and genomic instability,” Aging Cell, vol. 1, no. 1, pp. 40–46, 2002. View at Google Scholar · View at Scopus
  61. D. H. Betts and P. Madan, “Permanent embryo arrest: molecular and cellular concepts,” Molecular Human Reproduction, vol. 14, no. 8, pp. 445–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Chernoff, M. I. Gage, T. E. Stoker, R. L. Cooper, M. E. Gilbert, and E. H. Rogers, “Reproductive effects of maternal and pre-weaning undernutrition in rat offspring: age at puberty, onset of female reproductive senescence and intergenerational pup growth and viability,” Reproductive Toxicology, vol. 28, no. 4, pp. 489–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Wang, N. Erdmann, R. J. Giannone, J. Wu, M. Gomez, and Y. Liu, “An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 29, pp. 10256–10260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. N. D. Allen and D. M. Baird, “Telomere length maintenance in stem cell populations,” Biochimica et Biophysica Acta, vol. 1792, no. 4, pp. 324–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Ito, A. Hirao, F. Arai et al., “Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells,” Nature Medicine, vol. 12, no. 4, pp. 446–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Yahata, T. Takanashi, Y. Muguruma et al., “Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells,” Blood, vol. 118, no. 11, pp. 2941–2950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. I. Ligi, S. Simoncini, E. Tellier et al., “A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants,” Blood, vol. 118, no. 6, pp. 1699–1709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Aroviita, K. Teramo, V. Hiilesmaa, P. Westman, and R. Kekomäki, “Birthweight of full-term infants is associated with cord blood CD34+ cell concentration,” Acta Paediatrica, International Journal of Paediatrics, vol. 93, no. 10, pp. 1323–1329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. J. W. Meekins, R. Pijnenborg, M. Hanssens, I. R. McFadyen, and A. Van Asshe, “A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies,” BJOG, vol. 101, no. 8, pp. 669–674, 1994. View at Google Scholar · View at Scopus
  70. H. Nishi, N. Yahata, K. Ohyashiki et al., “Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases,” International Journal of Oncology, vol. 12, no. 1, pp. 81–85, 1998. View at Google Scholar · View at Scopus
  71. T. Kudo, T. Izutsu, and T. Sato, “Telomerase activity and apoptosis as indicators of ageing inplacenta with and without intrauterine growth retardation,” Placenta, vol. 21, no. 5-6, pp. 493–500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Nishi, T. Nakada, S. Kyo, M. Inoue, J. W. Shay, and K. Isaka, “Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT),” Molecular and Cellular Biology, vol. 24, no. 13, pp. 6076–6083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. G. J. Burton, E. Jauniaux, and D. S. Charnock-Jones, “The influence of the intrauterine environment on human placental development,” International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Biron-Shental, R. Sukenik-Halevy, Y. Sharon et al., “Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction,” American Journal of Obstetrics and Gynecology, vol. 202, no. 4, pp. 381.e1–381.e7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Lehner, J. Bobak, N. W. Kim, A. L. Shroyer, and K. R. Shroyer, “Localization of telomerase hTERT protein and survivin in placenta: relation to placental development and hydatidiform mole,” Obstetrics and Gynecology, vol. 97, no. 6, pp. 965–970, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Allsopp, J. Shimoda, D. Easa, and K. Ward, “Long telomeres in the mature human placenta,” Placenta, vol. 28, no. 4, pp. 324–327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. Hracsko, H. Orvos, Z. Novak, A. Pal, and I. S. Varga, “Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation,” Redox Report, vol. 13, no. 1, pp. 11–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. S. E. Pinney and R. A. Simmons, “Epigenetic mechanisms in the development of type 2 diabetes,” Trends in Endocrinology and Metabolism, vol. 21, no. 4, pp. 223–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Sebert, D. Sharkey, H. Budge, and M. E. Symonds, “The early programming of metabolic health: is epigenetic setting the missing link?” American Journal of Clinical Nutrition, vol. 94, no. 6, pp. 1953S–1958S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Gupta, M. Narang, B. D. Banerjee, and S. Basu, “Oxidative stress in term small for gestational age neonates born to undernourished mothers: a case control study,” BMC Pediatrics, vol. 4, article 14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Saker, N. Soulimane Mokhtari, S. A. Merzouk, H. Merzouk, B. Belarbi, and M. Narce, “Oxidant and antioxidant status in mothers and their newborns according to birthweight,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 141, no. 2, pp. 95–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Z. H. Howlader, S. Parveen, S. Tamanna, T. A. Khan, and F. Begum, “Oxidative stress and antioxidant status in neonates born to pre-eclamptic mother,” Journal of Tropical Pediatrics, vol. 55, no. 6, pp. 363–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Negi, D. Pande, A. Kumar, R. S. Khanna, and H. D. Khanna, “Evaluation of biomarkers of oxidative stress and antioxidant capacity in the cord blood of preterm low birth weight neonates,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 25, no. 8, pp. 1338–1341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Baserga, C. Bertolotto, N. K. MacLennan et al., “Uteroplacental insufficiency decreases small intestine growth and alters apoptotic homeostasis in term intrauterine growth retarded rats,” Early Human Development, vol. 79, no. 2, pp. 93–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. T. D. Pham, N. K. MacLennan, C. T. Chiu, G. S. Laksana, J. L. Hsu, and R. H. Lane, “Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney,” American Journal of Physiology, vol. 285, no. 5, pp. R962–R970, 2003. View at Google Scholar · View at Scopus
  86. E. Migliaccio, M. Giogio, S. Mele et al., “The p66(shc) adaptor protein controls oxidative stress response and life span in mammals,” Nature, vol. 402, no. 6759, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. B. J. Jennings, S. E. Ozanne, M. W. Dorling, and C. N. Hales, “Early growth determines longevity in male rats and may be related to telomere shortening in the kidney,” FEBS Letters, vol. 448, no. 1, pp. 4–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Entringer, E. S. Epel, R. Kumsta et al., “Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. E513–E518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Chang and C. B. Harley, “Telomere length and replicative aging in human vascular tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 11190–11194, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Okuda, M. Y. Khan, J. Skurnick, M. Kimura, H. Aviv, and A. Aviv, “Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis,” Atherosclerosis, vol. 152, no. 2, pp. 391–398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Demissie, D. Levy, E. J. Benjamin et al., “Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study,” Aging Cell, vol. 5, no. 4, pp. 325–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. A. L. Fitzpatrick, R. A. Kronmal, J. P. Gardner et al., “Leukocyte telomere length and cardiovascular disease in the cardiovascular health study,” American Journal of Epidemiology, vol. 165, no. 1, pp. 14–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Bekaert, T. De Meyer, E. R. Rietzschel et al., “Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease,” Aging Cell, vol. 6, no. 5, pp. 639–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. K. D. Salpea, P. J. Talmud, J. A. Cooper et al., “Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation,” Atherosclerosis, vol. 209, no. 1, pp. 42–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Testa, F. Olivieri, C. Sirolla et al., “Leukocyte telomere length is associated with complications of Type 2 diabetes mellitus,” Diabetic Medicine, vol. 28, no. 11, pp. 1388–1394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Fyhrquist, K. Silventoinen, O. Saijonmaa et al., “Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study,” Journal of Human Hypertension, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Campisi, “Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors,” Cell, vol. 120, no. 4, pp. 513–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. D. J. Baker, T. Wijshake, T. Tchkonia et al., “Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders,” Nature, vol. 479, no. 7372, pp. 232–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. B. J. Heidinger, J. D. Blount, W. Boner, K. Griffiths, N. B. Metcalfe, and P. Monaghan, “Telomere length in early life predicts lifespan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 5, pp. 1743–1748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. M. S. Martin-Gronert, J. L. Tarry-Adkins, R. L. Cripps, J. H. Chen, and S. E. Ozanne, “Maternal protein restriction leads to early life alterations in the expression of key molecules involved in the aging process in rat offspring,” American Journal of Physiology, vol. 294, no. 2, pp. R494–R500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. Z. Song, G. von Figura, Y. Liu et al., “Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood,” Aging cell, vol. 9, no. 4, pp. 607–615, 2010. View at Google Scholar · View at Scopus
  102. M. Fumagalli, F. Rossiello, M. Clerici et al., “Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation,” Nature Cell Biology, vol. 14, no. 4, pp. 355–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Sahin, S. Colla, M. Liesa et al., “Telomere dysfunction induces metabolic and mitochondrial compromise,” Nature, vol. 470, no. 7334, pp. 359–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. V. W. Dolinsky, C. F. Rueda-Clausen, J. S. Morton, S. T. Davidge, and J. R. B. Dyck, “Continued postnatal administration of resveratrol prevents diet-induced metabolic syndrome in rat offspring born growth restricted,” Diabetes, vol. 60, no. 9, pp. 2274–2284, 2011. View at Publisher · View at Google Scholar · View at Scopus