Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2012, Article ID 681306, 9 pages
http://dx.doi.org/10.1155/2012/681306
Review Article

Adrenocortical and Adipose Responses to High-Altitude-Induced, Long-Term Hypoxia in the Ovine Fetus

1Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
2Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA

Received 7 February 2012; Accepted 2 March 2012

Academic Editor: Timothy Regnault

Copyright © 2012 Dean A. Myers and Charles A. Ducsay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Giussani, J. A. D. Spencer, and M. A. Hanson, “Fetal cardiovascular reflex responses to hypoxaemia,” Fetal and Maternal Medicine Review, vol. 6, no. 1, pp. 17–37, 1994. View at Google Scholar · View at Scopus
  2. K. Akagi and J. R. G. Challis, “Hormonal and biophysical responses to acute hypoxemia in fetal sheep at 0.7-0.8 gestation,” Canadian Journal of Physiology and Pharmacology, vol. 68, no. 12, pp. 1527–1532, 1990. View at Google Scholar · View at Scopus
  3. H. E. Cohn, E. J. Sacks, M. A. Heymann, and A. M. Rudolph, “Cardiovascular responses to hypoxemia and acidemia in fetal lambs,” American Journal of Obstetrics and Gynecology, vol. 120, no. 6, pp. 817–824, 1974. View at Google Scholar · View at Scopus
  4. R. B. Wilkening and G. Meschia, “Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow,” American Journal of Physiology, vol. 13, no. 6, pp. H749–H755, 1983. View at Google Scholar · View at Scopus
  5. D. A. Giussani, N. Unno, S. L. Jenkins et al., “Dynamics of cardiovascular responses to repeated partial umbilical cord compression in late-gestation sheep fetus,” American Journal of Physiology, vol. 42, no. 5, pp. H2351–H2360, 1997. View at Google Scholar · View at Scopus
  6. J. Itskovitz, E. F. LaGamma, and A. M. Rudolph, “Heart rate and blood pressure responses to umbilical cord compression in fetal lambs with special reference to the mechanism of variable deceleration,” American Journal of Obstetrics and Gynecology, vol. 147, no. 4, pp. 451–457, 1983. View at Google Scholar · View at Scopus
  7. N. Unno, D. A. Giussani, W. K. H. Man A Hing, X. Y. Ding, J. H. Collins, and P. W. Nathanielsz, “Changes in adrenocorticotropin and cortisol responsiveness after repeated partial umbilical cord occlusions in the late gestation ovine fetus,” Endocrinology, vol. 138, no. 1, pp. 259–263, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. D. S. Gardner, A. J. W. Fletcher, A. L. Fowden, and D. A. Giussani, “A novel method for controlled and reversible long term compression of the umbilical cord in fetal sheep,” Journal of Physiology, vol. 535, no. 1, pp. 217–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. L. R. Green, Y. Kawagoe, M. Fraser, J. R. G. Challis, and B. S. Richardson, “Activation of the hypothalamic-pituitary-adrenal axis with repetitive umbilical cord occlusion in the preterm ovine fetus,” Journal of the Society for Gynecologic Investigation, vol. 7, no. 4, pp. 224–232, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. W. Boyle, F. K. Lotgering, and L. D. Longo, “Acute embolization of the uteroplacental circulation: uterine blood flow and placental CO diffusing capacity,” Journal of Developmental Physiology, vol. 6, no. 4, pp. 377–386, 1984. View at Google Scholar · View at Scopus
  11. R. Gagnon, J. Murotsuki, J. R. G. Challis, L. Fraher, and B. S. Richardson, “Fetal sheep endocrine responses to sustained hypoxemic stress after chronic fetal placental embolization,” American Journal of Physiology, vol. 272, no. 5, pp. E817–E823, 1997. View at Google Scholar · View at Scopus
  12. I. D. Phillips, G. Simonetta, J. A. Owens, J. S. Robinson, I. J. Clarke, and I. C. McMillen, “Placental restriction alters the functional development of the pituitary-adrenal axis in the sheep fetus during late gestation,” Pediatric Research, vol. 40, no. 6, pp. 861–866, 1996. View at Google Scholar · View at Scopus
  13. J. L. Dyer, I. C. McMillen, K. E. Warnes, and J. L. Morrison, “No evidence for an enhanced role of endothelial nitric oxide in the maintenance of arterial blood pressure in the IUGR sheep fetus,” Placenta, vol. 30, no. 8, pp. 705–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Adachi, H. Umezaki, K. M. Kaushal, and C. A. Ducsay, “Long-term hypoxia alters ovine fetal endocrine and physiological responses to hypotension,” American Journal of Physiology, vol. 287, no. 1, pp. R209–R217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. M. Harvey, R. D. Gilbert, L. D. Longo, and C. A. Ducsay, “Changes in ovine fetal adrenocortical responsiveness after long-term hypoxemia,” American Journal of Physiology, vol. 264, no. 5, pp. E741–E747, 1993. View at Google Scholar · View at Scopus
  16. T. Imamura, H. Umezaki, K. M. Kaushal, and C. A. Ducsay, “Long-term hypoxia alters endocrine and physiologic responses to umbilical cord occlusion in the ovine fetus,” Journal of the Society for Gynecologic Investigation, vol. 11, no. 3, pp. 131–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kamitomo, L. D. Longo, and R. D. Gilbert, “Right and left ventricular function in fetal sheep exposed to long-term high-altitude hypoxemia,” American Journal of Physiology, vol. 262, no. 2, pp. H399–H405, 1992. View at Google Scholar · View at Scopus
  18. C. A. Ducsay, M. Mlynarczyk, K. M. Kaushal, K. Hyatt, K. Hanson, and D. A. Myers, “Long-term hypoxia enhances ACTH response to arginine vasopressin but not corticotropin-releasing hormone in the near-term ovine fetus,” American Journal of Physiology, vol. 297, no. 3, pp. R892–R899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. V. Edwards and C. T. Jones, “The effect of splanchnic nerve section on the sensitivity of the adrenal cortex to adrenocorticotrophin in the calf,” Journal of Physiology, vol. 390, pp. 23–31, 1987. View at Google Scholar · View at Scopus
  20. A. V. Edwards, C. T. Jones, and S. R. Bloom, “Reduced adrenal cortical sensitivity to ACTH in lambs with cut splanchnic nerves,” Journal of Endocrinology, vol. 110, no. 1, pp. 81–85, 1986. View at Google Scholar · View at Scopus
  21. A. V. Edwards and C. T. Jones, “The effect of splanchnic nerve stimulation on adrenocortical activity in conscious calves,” Journal of Physiology, vol. 382, pp. 385–396, 1987. View at Google Scholar · View at Scopus
  22. W. C. Engeland and D. S. Gann, “Splanchnic nerve stimulation modulates steroid secretion in hypophysectomized dogs,” Neuroendocrinology, vol. 50, no. 2, pp. 124–131, 1989. View at Google Scholar · View at Scopus
  23. D. A. Giussani, H. H. G. McGarrigle, P. J. Moore, L. Bennet, J. A. D. Spencer, and M. A. Hanson, “Carotid sinus nerve section and the increase in plasma cortisol during acute hypoxia in fetal sheep,” Journal of Physiology, vol. 477, no. 1, pp. 75–80, 1994. View at Google Scholar · View at Scopus
  24. D. A. Myers, D. Robertshaw, and P. W. Nathanielsz, “Effect of bilateral splanchnic nerve section on adrenal function in the ovine fetus,” Endocrinology, vol. 127, no. 5, pp. 2328–2335, 1990. View at Google Scholar · View at Scopus
  25. A. H. Kato, M. Mlynarczyk, K. M. Kaushal, R. D. Gilbert, L. D. Longo, and C. A. Ducsay, “Endocrine responses to umbilical cord occlusion following carotid sinus denervation in the long-term hypoxemic ovine fetus,” Journal of the Society for Gynecologic Investigation, vol. 10, no. 2, article 235A, 2003. View at Google Scholar
  26. M. I. Castro, N. K. Valego, T. J. Zehnder, and J. C. Rose, “The ratio of plasma bioactive to immunoreactive ACTH-like activity increases with gestational age in the fetal lamb,” Journal of Developmental Physiology, vol. 18, no. 4, pp. 193–201, 1993. View at Google Scholar · View at Scopus
  27. M. I. Castro, N. K. Valego, T. J. Zehnder, and J. C. Rose, “Bioactive-to-immunoreactive ACTH activity changes with severity of stress in late-gestation ovine fetus,” American Journal of Physiology, vol. 265, no. 1, pp. E68–E73, 1993. View at Google Scholar · View at Scopus
  28. T. J. Zehnder, N. K. Valego, J. Schwartz, J. Green, and J. C. Rose, “Cortisol infusion depresses the ratio of bioactive to immunoreactive ACTH in adrenalectomized sheep fetuses,” American Journal of Physiology, vol. 274, no. 3, pp. E391–E396, 1998. View at Google Scholar · View at Scopus
  29. T. J. Zehnder, N. K. Valego, J. Schwartz, A. White, and J. C. Rose, “Regulation of bioactive and immunoreactive ACTH secretion by CRF and AVP in sheep fetuses,” American Journal of Physiology, vol. 269, no. 6, pp. E1076–E1082, 1995. View at Google Scholar · View at Scopus
  30. G. A. Carr, R. A. Jacobs, I. R. Young et al., “Development of adrenocorticotropin-(1-39) and precursor peptide secretory responses in the fetal sheep during the last third of gestation,” Endocrinology, vol. 136, no. 11, pp. 5020–5027, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. I. D. Phillips, J. T. Ross, J. A. Owens, I. R. Young, and I. C. McMillen, “The peptide ACTH(1-39), adrenal growth and steroidogenesis in the sheep fetus after disconnection of the hypothalamus and pituitary,” Journal of Physiology, vol. 491, no. 3, pp. 871–879, 1996. View at Google Scholar · View at Scopus
  32. T. A. Cudd and C. E. Wood, “Secretion and clearance of immunoreactive ACTH by fetal lung,” American Journal of Physiology, vol. 268, no. 5, pp. E845–E848, 1995. View at Google Scholar · View at Scopus
  33. C. E. Wood, D. Barkoe, A. The et al., “Fetal pulmonary immunoreactive adrenocorticotropin: molecular weight and cellular localization,” Regulatory Peptides, vol. 73, no. 3, pp. 191–196, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Schwartz, F. Kleftogiannis, R. Jacobs, G. D. Thorburn, S. R. Crosby, and A. White, “Biological activity of adrenocorticotropic hormone precursors on ovine adrenal cells,” American Journal of Physiology, vol. 268, no. 4, pp. E623–E629, 1995. View at Google Scholar · View at Scopus
  35. M. E. Bell, T. R. Myers, T. J. Mcdonald, and D. A. Myers, “Fetal sheep pituitary proopiomelanocortin in late gestation: effect of bilateral lesions of the paraventricular nucleus on regional and cellular messenger ribonucleic acid levels,” Endocrinology, vol. 138, no. 9, pp. 3873–3880, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. D. A. Myers, P. A. Bell, K. Hyatt, M. Mlynarczyk, and C. A. Ducsay, “Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus,” American Journal of Physiology, vol. 288, no. 5, pp. R1178–R1184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Myers, P. Bell, M. Mlynarczyk, and C. A. Ducsay, “Long term hypoxia alters plasma ACTH 1-39 and ACTH precursors in response to acute cord occlusion in the ovine fetus,” Journal of the Society for Gynecologic Investigation, vol. 11, no. 2, article 249A, 2004. View at Google Scholar
  38. D. A. Myers, K. Hyatt, M. Mlynarczyk, I. M. Bird, and C. A. Ducsay, “Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus,” American Journal of Physiology, vol. 289, no. 6, pp. R1707–R1714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. C. A. Ducsay and D. A. Myers, “eNOS activation and NO function: differential control of steroidogenesis by nitric oxide and its adaptation with hypoxia,” Journal of Endocrinology, vol. 210, pp. 259–269, 2011. View at Google Scholar
  40. M. B. Sewer and M. R. Waterman, “cAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells,” The Journal of Biological Chemistry, vol. 278, no. 10, pp. 8106–8111, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. V. E. Vargas, K. M. Kaushal, T. Monau, D. A. Myers, and C. A. Ducsay, “Long-term hypoxia enhances cortisol biosynthesis in near-term ovine fetal adrenal cortical cells,” Reproductive Sciences, vol. 18, no. 3, pp. 277–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Zhang, D. Xiao, and D. B. Bouslough, “Long-term high-altitude hypoxia increases plasma nitrate levels in pregnant ewes and their fetuses,” American Journal of Obstetrics and Gynecology, vol. 179, no. 6, pp. 1594–1598, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. T. R. Monau, V. E. Vargas, N. King, S. M. Yellon, D. A. Myers, and C. A. Ducsay, “Long-term hypoxia increases endothelial nitric oxide synthase expression in the ovine fetal adrenal.,” Reproductive Sciences, vol. 16, no. 9, pp. 865–874, 2009. View at Google Scholar · View at Scopus
  44. T. R. Monau, V. E. Vargas, Lubo Zhang, D. A. Myers, and C. A. Ducsay, “Nitric oxide inhibits ACTH-induced cortisol production in near-term, long-term hypoxic ovine fetal adrenocortical cells,” Reproductive Sciences, vol. 17, no. 10, pp. 955–962, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. J. Ignarro, “Nitric oxide as a unique signaling molecule in the vascular system: a historical overview,” Journal of Physiology and Pharmacology, vol. 53, pp. 503–514, 2002. View at Google Scholar
  46. C. J. Hanke, J. G. Drewett, C. R. Myers, and W. B. Campbell, “Nitric oxide inhibits aldosterone synthesis by a guanylyl cyclase- independent effect,” Endocrinology, vol. 139, no. 10, pp. 4053–4060, 1998. View at Google Scholar · View at Scopus
  47. M. Tsubaki, “Electron paramagnetic resonance study of ferrous cytochrome P-450scc-nitric oxide complexes: effects of cholesterol and its analogues,” Biochemistry, vol. 26, no. 14, pp. 4527–4534, 1987. View at Google Scholar · View at Scopus
  48. J. K. Peterson, F. Moran, A. J. Conley, and I. M. Bird, “Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex,” Endocrinology, vol. 142, no. 12, pp. 5351–5363, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. F. P. Pralong, R. Roduit, G. Waeber et al., “Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland,” Endocrinology, vol. 139, no. 10, pp. 4264–4268, 1998. View at Google Scholar · View at Scopus
  50. P. K. Chelikani, D. R. Glimm, and J. J. Kennelly, “Short communication: tissue distribution of leptin and leptin receptor mRNA in the bovine,” Journal of Dairy Science, vol. 86, no. 7, pp. 2369–2372, 2003. View at Google Scholar · View at Scopus
  51. S. R. Bornstein, K. Uhlmann, A. Haidan, M. Ehrhart-Bornstein, and W. A. Scherbaum, “Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly,” Diabetes, vol. 46, no. 7, pp. 1235–1238, 1997. View at Google Scholar · View at Scopus
  52. M. Kruse, S. R. Bornstein, K. Uhlmann, G. Paeth, and W. A. Scherbaum, “Leptin down-regulates the steroid producing system in the adrenal,” Endocrine Research, vol. 24, no. 3-4, pp. 587–590, 1998. View at Google Scholar · View at Scopus
  53. N. Cherradi, A. M. Capponi, R. C. Gaillard, and F. P. Pralong, “Decreased expression of steroidogenic acute regulatory protein: a novel mechanism participating in the leptin-induced inhibition of glucocorticoid biosynthesis,” Endocrinology, vol. 142, no. 8, pp. 3302–3308, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Salzmann, M. Otis, H. Long, C. Roberge, N. Gallo-Payet, and C. D. Walker, “Inhibition of steroidogenic response to adrenocorticotropin by leptin: implications for the adrenal response to maternal separation in neonatal rats,” Endocrinology, vol. 145, no. 4, pp. 1810–1822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. I. C. McMillen, B. S. Muhlhausler, J. A. Duffield, and B. S. J. Yuen, “Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth,” Proceedings of the Nutrition Society, vol. 63, no. 3, pp. 405–412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. B. S. J. Yuen, I. C. McMillen, M. E. Symonds, and P. C. Owens, “Abundance of leptin mRNA in fetal adipose tissue is related to fetal body weight,” Journal of Endocrinology, vol. 163, no. 3, pp. R11–R14, 1999. View at Google Scholar · View at Scopus
  57. M. C. Henson and V. D. Castracane, “Leptin in pregnancy,” Biology of Reproduction, vol. 63, no. 5, pp. 1219–1228, 2000. View at Google Scholar · View at Scopus
  58. D. C. Howe, A. Gertler, and J. R. G. Challis, “The late gestation increase in circulating ACTH and cortisol in the fetal sheep is suppressed by intracerebroventricular infusion of recombinant ovine leptin,” Journal of Endocrinology, vol. 174, no. 2, pp. 259–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. M. L. Heiman, R. S. Ahima, L. S. Craft, B. Schoner, T. W. Stephens, and J. S. Flier, “Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress,” Endocrinology, vol. 138, no. 9, pp. 3859–3863, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. B. S. J. Yuen, P. C. Owens, M. E. Symonds et al., “Effects of leptin on fetal plasma adrenocorticotropic hormone and cortisol concentrations and the timing of parturition in the sheep,” Biology of Reproduction, vol. 70, no. 6, pp. 1650–1657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. C. A. Ducsay, K. Hyatt, M. Mlynarczyk, K. M. Kaushal, and D. A. Myers, “Long-term hypoxia increases leptin receptors and plasma leptin concentrations in the late-gestation ovine fetus,” American Journal of Physiology, vol. 291, no. 5, pp. R1406–R1413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. A. Ducsay, K. M. Kaushal, K. Hanson, K. Furuta, and D. A. Myers, “Leptin antagonist treatment enhances expression of CYP17 and CYP11A1 in the adrenal cortex of long term hypoxic (LTH) but not normoxic late gestation fetal sheep,” Reproductive Sciences. In press.
  63. J. Scott, K. Hyatt, and D. A. Myers, “Developmental changes in adrenal leptin receptor expression and adrenocortical response to leptin in the ovine fetus,” Journal of the Society for Gynecologic Investigation, vol. 12, article A239, 2005. View at Google Scholar
  64. J. R. G. Challis, D. Sloboda, S. G. Matthews et al., “The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health,” Molecular and Cellular Endocrinology, vol. 185, no. 1-2, pp. 135–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. G. C. Liggins, “Adrenocortical related maturational events in the fetus,” American Journal of Obstetrics and Gynecology, vol. 126, no. 7, pp. 931–941, 1976. View at Google Scholar · View at Scopus
  66. G. C. Liggins, “The role of cortisol in preparing the fetus for birth,” Reproduction, Fertility and Development, vol. 6, no. 2, pp. 141–150, 1994. View at Google Scholar · View at Scopus
  67. J. R. G. Challis and A. N. Brooks, “Maturation and activation of hypothalamic-pituitary-adrenal function in fetal sheep,” Endocrine Reviews, vol. 10, no. 2, pp. 182–204, 1989. View at Google Scholar · View at Scopus
  68. P. D. Gluckman, “Editorial: nutrition, glucocorticoids, birth size, and adult disease,” Endocrinology, vol. 142, no. 5, pp. 1689–1691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. J. R. Seckl, “Glucocorticoids and small babies,” Quarterly Journal of Medicine, vol. 87, no. 5, pp. 259–262, 1994. View at Google Scholar · View at Scopus