Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2013, Article ID 412831, 11 pages
http://dx.doi.org/10.1155/2013/412831
Review Article

The Consequences of Chorioamnionitis: Preterm Birth and Effects on Development

1The Ritchie Centre, Monash Institute of Medical Research, Monash University, P.O. Box 5418, Clayton, VIC 3168, Australia
2Department of Obstetrics and Gynecology, Monash University, Clayton, VIC 3168, Australia
3Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia

Received 29 October 2012; Revised 28 January 2013; Accepted 10 February 2013

Academic Editor: Jeffrey Keelan

Copyright © 2013 Robert Galinsky et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Laws, Z. Li, and E. A. Sullivan, Autralia's mothers and babies 2008, Perinatal Statistics Series no. 24 Cat no. PER 50, Australian Institute of Health and Welfare, Canberra, Australia, 2010.
  2. D. R. Mattison, K. Damus, E. Fiore, J. Petrini, and C. Alter, “Preterm delivery: a public health perspective,” Paediatric and Perinatal Epidemiology, vol. 15, no. 2, pp. 7–16, 2001. View at Google Scholar · View at Scopus
  3. J. A. Martin, B. E. Hamilton, P. D. Sutton, S. J. Ventura, F. Menacker, and S. Kirmeyer, “Births: final data for 2004,” National Vital Statistics Reports, vol. 55, no. 1, pp. 1–101, 2006. View at Google Scholar · View at Scopus
  4. C. P. Howson, M. V. Kinney, and J. E. Lawn, Eds., “March of dimes, PMNCH, save the children, WHO. Born too soon,” The Global Action Report on Preterm Birth, WHO., Geneva, Switzerland, 2012. View at Google Scholar
  5. K. Flood and F. D. Malone, “Prevention of preterm birth,” Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 58–63, 2012. View at Google Scholar
  6. J. Tucker and W. McGuire, “Epidemiology of preterm birth,” British Medical Journal, vol. 329, no. 7467, pp. 675–678, 2004. View at Google Scholar · View at Scopus
  7. K. L. Kyser, F. H. Morriss Jr., E. F. Bell, J. M. Klein, and J. M. Dagle, “Improving survival of extremely preterm infants born between 22 and 25 weeks of gestation,” Obstetrics and Gynecology, vol. 119, pp. 795–800, 2012. View at Google Scholar
  8. J. A. Lemons, C. R. Bauer, W. Oh et al., “Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network,” Pediatrics, vol. 107, no. 1, p. E1, 2001. View at Google Scholar · View at Scopus
  9. V. Y. H. Yu and L. W. Doyle, “Regionalized long-term follow-up,” Seminars in Neonatology, vol. 9, no. 2, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. J. M. Moss, “Respiratory consequences of preterm birth,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 3, pp. 280–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. L. Chu, J. Wang, Y. Xin, J. Zheng, R. X. Zheng, and D. Z. Bi, “Protective and curative effects of prophylactic administration of pulmonary surfactant on neonatal respiratory distress syndrome,” National Medical Journal of China, vol. 86, no. 13, pp. 876–880, 2006. View at Google Scholar · View at Scopus
  12. G. C. Liggins, “Premature delivery of foetal lambs infused with glucocorticoids,” The Journal of Endocrinology, vol. 45, no. 4, pp. 515–523, 1969. View at Google Scholar · View at Scopus
  13. S. Abeywardana, The Report of the Australian and New Zealand Neonatal Network, 2004, ANZNN, Sydney, Australia, 2006.
  14. H. Blencowe, S. Cousens, M. Z. Oestergaard et al., “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications,” The Lancet, vol. 379, pp. 2162–2172, 2012. View at Google Scholar
  15. H. H. Chang, J. Larson, H. Blencowe et al., “Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index,” The Lancet, vol. 381, no. 9862, pp. 223–234, 2012. View at Publisher · View at Google Scholar
  16. R. B. Russell, N. S. Green, C. A. Steiner et al., “Cost of hospitalization for preterm and low birth weight infants in the United States,” Pediatrics, vol. 120, no. 1, pp. e1–e9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Reuters, “The Cost of Prematurity and Complicated Deliveries to U.S. Employers,” Report Prepared For the March of Dimes, 2008. View at Google Scholar
  18. J. M. Hodek, J. M. von der Schulenburg, and T. Mittendorf, “Measuring economic consequences of preterm birth—methodological recommendations for the evaluation of personal burden on children and their caregivers,” Health Economics Review, vol. 1, no. 1, article 6, 2011. View at Publisher · View at Google Scholar
  19. M. M. Slattery and J. J. Morrison, “Preterm delivery,” The Lancet, vol. 360, no. 9344, pp. 1489–1497, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. L. Goldenberg, J. F. Culhane, J. D. Iams, and R. Romero, “Epidemiology and causes of preterm birth,” The Lancet, vol. 371, no. 9606, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Lahra, P. J. Beeby, and H. E. Jeffery, “Maternal versus fetal inflammation and respiratory distress syndrome: a 10-year hospital cohort study,” Archives of Disease in Childhood, vol. 94, no. 1, pp. F13–F16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Lahra and H. E. Jeffery, “A fetal response to chorioamnionitis is associated with early survival after preterm birth,” American Journal of Obstetrics and Gynecology, vol. 190, no. 1, pp. 147–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Goldenberg, J. C. Hauth, and W. W. Andrews, “Intrauterine infection and preterm delivery,” The New England Journal of Medicine, vol. 342, no. 20, pp. 1500–1507, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. Lamont and S. R. Sawant, “Infection in the prediction and antibiotics in the prevention of spontaneous preterm labour and preterm birth,” Minerva Ginecologica, vol. 57, no. 4, pp. 423–433, 2005. View at Google Scholar · View at Scopus
  25. A. Leviton, N. Paneth, M. L. Reuss et al., “Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants,” Pediatric Research, vol. 46, no. 5, pp. 566–575, 1999. View at Google Scholar · View at Scopus
  26. H. Hagberg, U. B. Wennerholm, and K. Sävman, “Sequelae of chorioamnionitis,” Current Opinion in Infectious Diseases, vol. 15, no. 3, pp. 301–306, 2002. View at Google Scholar · View at Scopus
  27. A. H. Jobe, S. Kallapur, and T. J. M. Moss, “Inflammation/infection: effects on the fetal/newborn lung,” in The Newborn Lung, Neonatology Questions and Controversies, E. Banclari and R. A. Polin, Eds., pp. P119–P140, Elsevier, Philadelphia, Pa, USA, 2008. View at Google Scholar
  28. R. M. Viscardi, C. K. Muhumuza, A. Rodriguez et al., “Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants,” Pediatric Research, vol. 55, no. 6, pp. 1009–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Holzman, X. Lin, P. Senagore, and H. Chung, “Histologic chorioamnionitis and preterm delivery,” American Journal of Epidemiology, vol. 166, no. 7, pp. 786–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. W. W. Andrews, R. L. Goldenberg, O. Faye-Petersen, S. Cliver, A. R. Goepfert, and J. C. Hauth, “The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants,” American Journal of Obstetrics and Gynecology, vol. 195, no. 3, pp. 803–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Gotsch, R. Romero, J. P. Kusanovic et al., “The fetal inflammatory response syndrome,” Clinical Obstetrics and Gynecology, vol. 50, no. 3, pp. 652–683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Gomez, R. Romero, F. Ghezzi, Bo Hyun Yoon, M. Mazor, and S. M. Berry, “The fetal inflammatory response syndrome,” American Journal of Obstetrics and Gynecology, vol. 179, no. 1, pp. 194–202, 1998. View at Google Scholar · View at Scopus
  33. A. A. Abdulkadir, T. Kimimasa, M. J. Bell, T. A. MacPherson, B. B. Keller, and T. D. Yanowitz, “Placental inflammation and fetal hemodynamics in a rat model of chorioamnionitis,” Pediatric Research, vol. 68, no. 6, pp. 513–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. A. Dombroski, D. S. Woodard, M. J. K. Harper, and R. S. Gibbs, “A rabbit model for bacteria-induced preterm pregnancy loss,” American Journal of Obstetrics and Gynecology, vol. 163, no. 6, pp. 1938–1943, 1990. View at Google Scholar · View at Scopus
  35. M. A. Elovitz and C. Mrinalini, “Animal models of preterm birth,” Trends in Endocrinology and Metabolism, vol. 15, no. 10, pp. 479–487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Hirsch and H. Wang, “The molecular pathophysiology of bacterially induced preterm labor: insights from the murine model,” Journal of the Society for Gynecologic Investigation, vol. 12, no. 3, pp. 145–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Heddleston, R. S. McDuffie, and R. S. Gibbs, “A rabbit model for ascending infection in pregnancy: intervention with indomethacin and delayed ampicillin-sulbactam therapy,” American Journal of Obstetrics and Gynecology, vol. 169, no. 3, pp. 708–712, 1993. View at Google Scholar · View at Scopus
  38. P. L. Grigsby, J. J. Hirst, J. P. Scheerlinck, D. J. Phillips, and G. Jenkin, “Fetal responses to maternal and intra-amniotic lipopolysaccharide administration in sheep,” Biology of Reproduction, vol. 68, no. 5, pp. 1695–1702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. H. Schlafer, B. Yuh, G. L. Foley, T. H. Elssaser, D. Sadowsky, and P. W. Nathanielsz, “Effect of salmonella endotoxin administered to the pregnant sheep at 133–142 days gestation on fetal oxygenation, maternal and fetal adrenocorticotropic hormone and cortisol, and maternal plasma tumor necrosis factor α concentrations,” Biology of Reproduction, vol. 50, no. 6, pp. 1297–1302, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Y. S. Feng, T. Samarasinghe, D. J. Phillips et al., “Acute and chronic effects of endotoxin on cerebral circulation in lambs,” American Journal of Physiology, vol. 298, no. 3, pp. R760–R766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Rounioja, J. Räsänen, M. Ojaniemi, V. Glumoff, H. Autio-Harmainen, and M. Hallman, “Mechanism of acute fetal cardiovascular depression after maternal inflammatory challenge in mouse,” American Journal of Pathology, vol. 166, no. 6, pp. 1585–1592, 2005. View at Google Scholar · View at Scopus
  42. S. J. Renaud, T. Cotechini, J. S. Quirt, S. K. Macdonald-Goodfellow, M. Othman, and C. H. Graham, “Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion,” Journal of Immunology, vol. 186, no. 3, pp. 1799–1808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Belarbi, C. Arellano, R. Ferguson, T. Jopson, and S. Rosi, “Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks,” Brain, Behavior, and Immunity, vol. 26, pp. 18–23, 2012. View at Google Scholar
  44. H. Ashdown, Y. Dumont, M. Ng, S. Poole, P. Boksa, and G. N. Luheshi, “The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia,” Molecular Psychiatry, vol. 11, no. 1, pp. 47–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. A. Gayle, R. Beloosesky, M. Desai, F. Amidi, S. E. Nuñez, and M. G. Ross, “Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain,” American Journal of Physiology, vol. 286, no. 6, pp. R1024–R1029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Kohmura, T. Kirikae, F. Kirikae, M. Nakano, and I. Sato, “Lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) in mice is principally due to maternal cause but not fetal sensitivity to LPS,” Microbiology and Immunology, vol. 44, no. 11, pp. 897–904, 2000. View at Google Scholar · View at Scopus
  47. J. P. Newnham, T. J. Moss, B. W. Kramer, I. Nitsos, M. Ikegami, and A. H. Jobe, “The fetal maturational and inflammatory responses to different routes of endotoxin infusion in sheep,” American Journal of Obstetrics and Gynecology, vol. 186, no. 5, pp. 1062–1068, 2002. View at Google Scholar · View at Scopus
  48. M. A. Elovitz, A. G. Brown, K. Breen et al., “Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury,” International Journal of Developmental Neuroscience, vol. 29, pp. 663–671, 2011. View at Google Scholar
  49. K. Bry and U. Lappalainen, “Intra-amniotic endotoxin accelerates lung maturation in fetal rabbits,” Acta Paediatrica, International Journal of Paediatrics, vol. 90, no. 1, pp. 74–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. B. W. Kramer, T. J. Moss, K. E. Willet et al., “Dose and time response after intraamniotic endotoxin in preterm lambs,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 6, pp. 982–988, 2001. View at Google Scholar · View at Scopus
  51. I. Nitsos, T. J. M. Moss, M. L. Cock, R. Harding, and J. P. Newnham, “Fetal responses to intra-amniotic endotoxin in sheep,” Journal of the Society for Gynecologic Investigation, vol. 9, no. 2, pp. 80–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. L. F. Gonçalves, T. Chaiworapongsa, and R. Romero, “Intrauterine infection and prematurity,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 1, pp. 3–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Kim, R. Romero, M. T. Gervasi et al., “Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection,” Laboratory Investigation, vol. 89, no. 8, pp. 924–936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Romero, J. Espinoza, T. Chaiworapongsa, and K. Kalache, “Infection and prematurity and the role of preventive strategies,” Seminars in Neonatology, vol. 7, no. 4, pp. 259–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Romero, J. Espinoza, L. F. Gonçalves, J. P. Kusanovic, L. A. Friel, and J. K. Nien, “Inflammation in preterm and term labour and delivery,” Seminars in Fetal and Neonatal Medicine, vol. 11, no. 5, pp. 317–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. D. B. DiGiulio, “Diversity of microbes in amniotic fluid,” Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 2–11, 2012. View at Google Scholar
  57. D. B. DiGiulio, R. Romero, J. P. Kusanovic et al., “Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes,” American Journal of Reproductive Immunology, vol. 64, no. 1, pp. 38–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. K. D. Wenstrom, W. W. Andrews, N. E. Bowles, J. A. Towbin, J. C. Hauth, and R. L. Goldenberg, “Intrauterine viral infection at the time of second trimester genetic amniocentesis,” Obstetrics and Gynecology, vol. 92, no. 3, pp. 420–424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Liesnard, C. Donner, F. Brancart, F. Gosselin, M. L. Delforge, and F. Rodesch, “Prenatal diagnosis of congenital cytomegalovirus infection: prospective study of 237 pregnancies at risk,” Obstetrics and Gynecology, vol. 95, no. 6, pp. 881–888, 2000. View at Google Scholar · View at Scopus
  60. D. B. DiGiulio, R. Romero, H. P. Amogan et al., “Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation,” PLoS ONE, vol. 3, no. 8, Article ID e3056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. K. L. B. Reddick, R. Jhaveri, M. Gandhi, A. H. James, and G. K. Swamy, “Pregnancy outcomes associated with viral hepatitis,” Journal of Viral Hepatitis, vol. 18, no. 7, pp. e394–e398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Koi, J. Zhang, and S. Parry, “The mechanisms of placental viral infection,” Annals of the New York Academy of Sciences, vol. 943, pp. 148–156, 2001. View at Google Scholar · View at Scopus
  63. V. Ilievski, S. J. Lu, and E. Hirsch, “Activation of toll-like receptors 2 or 3 and preterm delivery in the mouse,” Reproductive Sciences, vol. 14, no. 4, pp. 315–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. N. H. Hillman, T. J. M. Moss, I. Nitsos et al., “Toll-like receptors and agonist responses in the developing fetal sheep lung,” Pediatric Research, vol. 63, no. 4, pp. 388–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Agrawal and E. Hirsch, “Intrauterine infection and preterm labor,” Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 12–19, 2012. View at Google Scholar
  66. U. Holmlund, G. Cebers, A. R. Dahlfors et al., “Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta,” Immunology, vol. 107, no. 1, pp. 145–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Romero, R. Gomez, F. Ghezzi et al., “A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition,” American Journal of Obstetrics and Gynecology, vol. 179, no. 1, pp. 186–193, 1998. View at Google Scholar · View at Scopus
  68. C. A. Van Meir, M. M. Ramirez, S. G. Matthews, A. A. Calder, M. J. N. C. Keirse, and J. R. G. Challis, “Chorionic prostaglandin catabolism is decreased in the lower uterine segment with term labour,” Placenta, vol. 18, no. 2-3, pp. 109–114, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. B. H. Yoon, R. Romero, J. K. Jun et al., “An increase in fetal plasma cortisol but not dehydroepiandrosterone sulfate is followed by the onset of preterm labor in patients with preterm premature rupture of the membranes,” American Journal of Obstetrics and Gynecology, vol. 179, no. 5, pp. 1107–1114, 1998. View at Google Scholar · View at Scopus
  70. D. Rezeberga, G. Lazdane, J. Kroica, L. Sokolova, and G. G. G. Donders, “Placental histological inflammation and reproductive tract infections in a low risk pregnant population in Latvia,” Acta Obstetricia et Gynecologica Scandinavica, vol. 87, no. 3, pp. 360–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Romero, J. Espinoza, L. F. Gonçalves, J. P. Kusanovic, L. Friel, and S. Hassan, “The role of inflammation and infection in preterm birth,” Seminars in Reproductive Medicine, vol. 25, no. 1, pp. 21–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Romero, J. Espinoza, L. F. Goncalves et al., “Fetal cardiac dysfunction in preterm premature rupture of membranes,” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 16, pp. 146–157, 2004. View at Google Scholar
  73. M. M. Parker, J. H. Shelhamer, and S. L. Bacharach, “Profound but reversible myocardial depression in patients with septic shock,” Annals of Internal Medicine, vol. 100, no. 4, pp. 483–490, 1984. View at Google Scholar · View at Scopus
  74. T. D. Yanowitz, J. A. Jordan, C. H. Gilmour et al., “Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations,” Pediatric Research, vol. 51, no. 3, pp. 310–316, 2002. View at Google Scholar · View at Scopus
  75. S. Rounioja, J. Räsänen, V. Glumoff, M. Ojaniemi, K. Mäkikallio, and M. Hallman, “Intra-amniotic lipopolysaccharide leads to fetal cardiac dysfunction: a mouse model for fetal inflammatory response,” Cardiovascular Research, vol. 60, no. 1, pp. 156–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. M. A. Panaro, A. Acquafredda, P. Cavallo, A. Cianciulli, C. Saponaro, and V. Mitolo, “Inflammatory responses in embryonal cardiomyocytes exposed to LPS challenge. An in vitro model of deciphering the effects of LPS on the heart,” Current Pharmaceutical Design, vol. 16, no. 7, pp. 754–765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. K. L. Watterberg, L. M. Demers, S. M. Scott, and S. Murphy, “Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops,” Pediatrics, vol. 97, no. 2, pp. 210–215, 1996. View at Google Scholar · View at Scopus
  78. A. J. Westover and T. J. Moss, “Effects of intrauterine infection/inflammation on fetal lung development,” Clinical and Experimental Pharmacology & Physiology, vol. 39, no. 9, pp. 824–830, 2012. View at Publisher · View at Google Scholar
  79. D. J. Henderson-Smart, J. L. Hutchinson, D. A. Donoghue, N. J. Evans, J. M. Simpson, and I. Wright, “Prenatal predictors of chronic lung disease in very preterm infants,” Archives of Disease in Childhood, vol. 91, no. 1, pp. F40–F45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. H. Jobe and M. Ikegami, “Prevention of bronchopulmonary dysplasia,” Current Opinion in Pediatrics, vol. 13, no. 2, pp. 124–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. J. V. Been, I. G. Rours, R. F. Kornelisse, F. Jonkers, R. R. de Krijger, and L. J. Zimmermann, “Chorioamnionitis alters the response to surfactant in preterm infants,” Journal of Pediatrics, vol. 156, no. 1, pp. 10.e1–15.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. H. J. Lee, E. K. Kim, H. S. Kim, C. W. Choi, B. I. I. Kim, and J. H. Choi, “Chorioamnionitis, respiratory distress syndrome and bronchopulmonary dysplasia in extremely low birth weight infants,” Journal of Perinatology, vol. 31, no. 3, pp. 166–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Laughon, E. N. Allred, C. Bose et al., “Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants,” Pediatrics, vol. 123, no. 4, pp. 1124–1131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. H. Jobe, “The new bronchopulmonary dysplasia,” Current Opinion in Pediatrics, vol. 23, no. 2, pp. 167–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Ikegami, A. Tsuda, A. Karube, H. Kodama, H. Hirano, and T. Tanaka, “Effects of intrauterine IL-6 and IL-8 on the expression of surfactant apoprotein mRNAs in the fetal rat lung,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 93, no. 1, pp. 97–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. L. S. Prince, V. O. Okoh, T. O. Moninger, and S. Matalon, “Lipopolysaccharide increases alveolar type II cell number in fetal mouse lungs through Toll-like receptor 4 and NF-κB,” American Journal of Physiology, vol. 287, no. 5, pp. L999–L1006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Bry, U. Lappalainen, and M. Hallman, “Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth,” Journal of Clinical Investigation, vol. 99, no. 12, pp. 2992–2999, 1997. View at Google Scholar · View at Scopus
  88. K. E. Willet, A. H. Jobe, M. Ikegami, J. Newnham, S. Brennan, and P. D. Sly, “Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs,” Pediatric Research, vol. 48, no. 6, pp. 782–788, 2000. View at Google Scholar · View at Scopus
  89. T. J. M. Moss, J. P. Newnham, K. E. Willett, B. W. Kramer, A. H. Jobe, and M. Ikegami, “Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 6, pp. 805–811, 2002. View at Google Scholar · View at Scopus
  90. A. J. Westover, S. B. Hooper, M. J. Wallace, and T. J. Moss, “Prostaglandins mediate the fetal pulmonary response to intrauterine inflammation,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 302, pp. L664–L678, 2012. View at Google Scholar
  91. S. G. Kallapur, A. H. Jobe, M. Ikegami, and C. J. Bachurski, “Increased IP-10 and MIG expression after intra-amniotic endotoxin in preterm lamb lung,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 779–786, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. S. G. Kallapur, C. J. Bachurski, T. D. Le Cras, S. N. Joshi, M. Ikegami, and A. H. Jobe, “Vascular changes after intra-amniotic endotoxin in preterm lamb lungs,” American Journal of Physiology, vol. 287, no. 6, pp. L1178–L1185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Galinsky, S. B. Hooper, G. R. Polglase, and T. J. M. Moss, “Intrauterine inflammation alters fetal cardiopulmonary and cerebral hemodynamics in sheep,” In Press.
  94. M. Woldesenbet and J. M. Perlman, “Histologic chorioamnionitis: an occult marker of severe pulmonary hypertension in the term newborn,” Journal of Perinatology, vol. 25, no. 3, pp. 189–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. S. H. Abman, “Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn,” Neonatology, vol. 91, no. 4, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. R. H. Steinhorn, “Neonatal pulmonary hypertension,” Pediatric Critical Care Medicine, vol. 11, no. 2, pp. S79–S84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. G. R. Polglase, S. B. Hooper, A. W. Gill et al., “Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs,” Journal of Applied Physiology, vol. 108, no. 6, pp. 1757–1765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. G. R. Polglase, I. Nitsos, A. A. Baburamani et al., “Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs,” Journal of Applied Physiology, vol. 112, pp. 481–489, 2012. View at Google Scholar
  99. T. Kaukola, R. Herva, M. Perhomaa et al., “Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants,” Pediatric Research, vol. 59, no. 3, pp. 478–483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. R. W. Redline, N. Minich, H. G. Taylor, and M. Hack, “Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants (<1 kg),” Pediatric and Developmental Pathology, vol. 10, no. 4, pp. 282–292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Suppiej, M. Franzoi, S. Vedovato, A. Marucco, S. Chiarelli, and V. Zanardo, “Neurodevelopmental outcome in preterm histological chorioamnionitis,” Early Human Development, vol. 85, no. 3, pp. 187–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. CDC, “Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment-United States, 2003,” MMWR Morbidity and Mortality Weekly Report, vol. 53, pp. 57–59, 2004. View at Google Scholar
  103. Y. W. Wu, “Systematic review of chorioamnionitis and cerebral palsy,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 1, pp. 25–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. D. J. Murphy, S. Sellers, I. Z. MacKenzie, P. L. Yudkin, and A. M. Johnson, “Case-control study of antenatal and intrapartum risk factors for cerebral palsy in very preterm singleton babies,” The Lancet, vol. 346, no. 8988, pp. 1449–1454, 1995. View at Google Scholar · View at Scopus
  105. J. K. Grether and K. B. Nelson, “Maternal infection and cerebral palsy in infants of normal birth weight,” Journal of the American Medical Association, vol. 278, no. 3, pp. 207–211, 1997. View at Google Scholar
  106. J. K. Grether and K. B. Nelson, “Erratum: maternal infection and cerebral palsy in infants of normal birth weight,” Journal of the American Medical Association, vol. 279, no. 2, p. 118, 1998. View at Google Scholar
  107. I. Hansen-Pupp, A. L. Hallin, L. Hellström-Westas et al., “Inflammation at birth is associated with subnormal development in very preterm infants,” Pediatric Research, vol. 64, no. 2, pp. 183–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. O. Khwaja and J. J. Volpe, “Pathogenesis of cerebral white matter injury of prematurity,” Archives of Disease in Childhood, vol. 93, no. 2, pp. F153–F161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Limperopoulos, H. Bassan, N. R. Sullivan et al., “Positive screening for autism in ex-preterm infants: prevalence and risk factors,” Pediatrics, vol. 121, no. 4, pp. 758–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. S. Brown, J. Hooton, C. A. Schaefer et al., “Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring,” American Journal of Psychiatry, vol. 161, no. 5, pp. 889–895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. A. S. Brown, “The environment and susceptibility to schizophrenia,” Progress in Neurobiology, vol. 93, no. 1, pp. 23–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. U. Meyer, J. Feldon, and O. Dammann, “Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation?” Pediatric Research, vol. 69, no. 5, pp. 26R–33R, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. W. Wu and J. M. Colford, “Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis,” Journal of the American Medical Association, vol. 284, no. 11, pp. 1417–1424, 2000. View at Google Scholar · View at Scopus
  114. R. Romero, J. Espinoza, L. F. Gonçalves et al., “Fetal cardiac dysfunction in preterm premature rupture of membranes,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 16, no. 3, pp. 146–157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. T. D. Yanowitz, R. W. Baker, J. M. Roberts, and B. S. Brozanski, “Low blood pressure among very-low-birth-weight infants with fetal vessel inflammation,” Journal of Perinatology, vol. 24, no. 5, pp. 299–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. T. D. Yanowitz, J. A. Jordan, C. H. Gilmour et al., “Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations,” Pediatric Research, vol. 51, no. 3, pp. 310–316, 2002. View at Google Scholar · View at Scopus
  117. T. D. Yanowitz, D. M. Potter, A. Bowen, R. W. Baker, and J. M. Roberts, “Variability in cerebral oxygen delivery is reduced in premature neonates exposed to chorioamnionitis,” Pediatric Research, vol. 59, no. 2, pp. 299–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. O. Khwaja and J. J. Volpe, “Pathogenesis of cerebral white matter injury of prematurity,” Archives of Disease in Childhood, vol. 93, no. 2, pp. F153–F161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. T. D. Yanowitz, “Cerebrovascular autoregulation among very low birth weight infants,” Journal of Perinatology, vol. 31, pp. 689–691, 2011. View at Google Scholar
  120. J. S. Soul, P. E. Hammer, M. Tsuji et al., “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatric Research, vol. 61, no. 4, pp. 467–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. M. M. Gilmore, B. S. Stone, J. A. Shepard et al., “Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant,” Journal of Perinatology, vol. 31, pp. 722–729, 2011. View at Google Scholar
  122. T. D. Yanowitz, R. W. Baker, and J. M. Roberts, “Hemodynamic changes in premature infants exposed to chorioamnionitis,” Pediatric Research, vol. 55, pp. 524A–524A, 2004. View at Google Scholar
  123. C. Limperopoulos, K. K. Gauvreau, H. O'Leary et al., “Cerebral hemodynamic changes during intensive care of preterm infants,” Pediatrics, vol. 122, no. 5, pp. e1006–e1013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. B. H. Yoon, C. J. Kim, R. Romero et al., “Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits,” American Journal of Obstetrics and Gynecology, vol. 177, no. 4, pp. 797–802, 1997. View at Google Scholar · View at Scopus
  125. I. Nitsos, S. M. Rees, J. Duncan et al., “Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 4, pp. 239–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. J. R. Duncan, M. L. Cock, K. Suzuki, J. P. Y. Scheerlinck, R. Harding, and S. M. Rees, “Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 2, pp. 87–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. Z. Cai, Z. L. Pan, Y. Pang, O. B. Evans, and P. G. Rhodes, “Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration,” Pediatric Research, vol. 47, no. 1, pp. 64–72, 2000. View at Google Scholar · View at Scopus
  128. C. C. Andersen, J. J. Pillow, A. W. Gill et al., “The cerebral critical oxygen threshold of ventilated preterm lambs and the influence of antenatal inflammation,” Journal of Applied Physiology, vol. 111, pp. 775–781, 2011. View at Google Scholar
  129. A. Leviton, “Preterm birth and cerebral palsy: is tumor necrosis factor the missing link?” Developmental Medicine and Child Neurology, vol. 35, no. 6, pp. 553–558, 1993. View at Google Scholar · View at Scopus
  130. B. H. Yoon, R. Romero, J. K. Jun et al., “Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia,” American Journal of Obstetrics and Gynecology, vol. 177, no. 4, pp. 825–830, 1997. View at Google Scholar · View at Scopus
  131. K. Iida, S. Takashima, and Y. Takeuchi, “Etiologies and distribution of neonatal leukomalacia,” Pediatric Neurology, vol. 8, no. 3, pp. 205–209, 1992. View at Publisher · View at Google Scholar · View at Scopus
  132. T. van der Poll, H. R. Buller, H. Ten Cate et al., “Activation of coagulation after administration of tumor necrosis factor to normal subjects,” The New England Journal of Medicine, vol. 322, no. 23, pp. 1622–1627, 1990. View at Google Scholar · View at Scopus
  133. K. W. Selmaj and C. S. Raine, “Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro,” Annals of Neurology, vol. 23, no. 4, pp. 339–346, 1988. View at Google Scholar · View at Scopus
  134. A. W. D. Gavilanes, E. Strackx, B. W. Kramer et al., “Chorioamnionitis induced by intraamniotic lipopolysaccharide resulted in an interval-dependent increase in central nervous system injury in the fetal sheep,” American Journal of Obstetrics and Gynecology, vol. 200, no. 4, pp. 437.e1–437.e8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Leviton and P. Gressens, “Neuronal damage accompanies perinatal white-matter damage,” Trends in Neurosciences, vol. 30, no. 9, pp. 473–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Gantert, J. V. Been, A. W. Gavilanes et al., “Chorioamnionitis: a multiorgan disease of the fetus?” Journal of Perinatology, vol. 30, pp. S21–S30, 2010. View at Publisher · View at Google Scholar
  137. B. H. Yoon, J. K. Jun, R. Romero et al., “Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy,” American Journal of Obstetrics and Gynecology, vol. 177, no. 1, pp. 19–26, 1997. View at Publisher · View at Google Scholar · View at Scopus
  138. M. K. Sharief and E. J. Thompson, “In vivo relationship of tumor necrosis factor-α of blood-brain barrier damage in patients with active multiple sclerosis,” Journal of Neuroimmunology, vol. 38, no. 1-2, pp. 27–34, 1992. View at Google Scholar · View at Scopus
  139. D. Wong, K. Dorovini-Zis, and S. R. Vincent, “Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier,” Experimental Neurology, vol. 190, no. 2, pp. 446–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. F. Moscuzza, F. Belcari, V. Nardini et al., “Correlation between placental histopathology and fetal/neonatal outcome: chorioamnionitis and funisitis are associated to intraventricular haemorrage and retinopathy of prematurity in preterm newborns,” Gynecological Endocrinology, vol. 27, no. 5, pp. 319–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Polam, A. Koons, M. Anwar, S. Shen-Schwarz, and T. Hegyi, “Effect of chorioamnionitis on neurodevelopmental outcome in preterm infants,” Archives of Pediatrics and Adolescent Medicine, vol. 159, no. 11, pp. 1032–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Sato, S. Nishimaki, S. Yokota et al., “Severity of chorioamnionitis and neonatal outcome,” Thejournal of Obstetrics and Gynaecology Research, vol. 37, pp. 1313–1319, 2011. View at Google Scholar
  143. J. Lee and O. Dammann, “Perinatal infection, inflammation, and retinopathy of prematurity,” Seminars in Fetal & Neonatal Medicine, vol. 17, pp. 26–29, 2012. View at Google Scholar
  144. P. M. Liu, P. C. Fang, C. B. Huang et al., “Risk factors of retinopathy of prematurity in premature infants weighing less than 1600 g,” American Journal of Perinatology, vol. 22, no. 2, pp. 115–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. J. M. Di Fiore, J. N. Bloom, F. Orge et al., “A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity,” Journal of Pediatrics, vol. 157, no. 1, pp. 69–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. B. H. Yoon, Y. A. Kim, R. Romero et al., “Association of oligohydramnios in women with preterm premature rupture of membranes with an inflammatory response in fetal, amniotic, and maternal compartments,” American Journal of Obstetrics and Gynecology, vol. 181, no. 4, pp. 784–788, 1999. View at Publisher · View at Google Scholar · View at Scopus
  147. M. S. Rangel-Frausto, D. Pittet, M. Costigan, T. Hwang, C. S. Davis, and R. P. Wenzel, “The natural history of the systemic inflammatory response syndrome (SIRS): a prospective study,” Journal of the American Medical Association, vol. 273, no. 2, pp. 117–123, 1995. View at Google Scholar · View at Scopus
  148. A. B. Modena and S. Fieni, “Amniotic fluid dynamics,” Acta Biomedica de l'Ateneo Parmense, vol. 75, no. 1, pp. 11–13, 2004. View at Google Scholar · View at Scopus
  149. K. Itabashi, T. Ohno, and H. Nishida, “Indomethacin responsiveness of patent ductus arteriosus and renal abnormalities in preterm infants treated with indomethacin,” Journal of Pediatrics, vol. 143, no. 2, pp. 203–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Galinsky, T. J. M. Moss, L. Gubhaju, S. B. Hooper, M. Jane Black, and G. R. Polglase, “Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep,” American Journal of Physiology, vol. 301, no. 2, pp. F280–F285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. B. M. Brenner, D. L. Garcia, and S. Anderson, “Glomeruli and blood pressure. Less of one, more the other?” American Journal of Hypertension, vol. 1, no. 4, pp. 335–347, 1988. View at Google Scholar · View at Scopus