Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2011, Article ID 735308, 9 pages
http://dx.doi.org/10.4061/2011/735308
Review Article

Yersinia enterocolitica and Yersinia pseudotuberculosis Detection in Foods

1Shimane Prefectural Institute of Public Health and Environment Science, Izumo 690-0122, Japan
2Food Hygiene Laboratory, National Food Research Institute, Tsukuba 305-8642, Japan
3Food Safety Laboratory, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan

Received 3 May 2011; Accepted 7 June 2011

Academic Editor: Latiful Bari

Copyright © 2011 H. Fukushima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Ackers, S. Schoenfeld, J. Markman et al., “An outbreak of s O:8 infections associated with pasteurized milk,” Journal of Infectious Diseases, vol. 181, no. 5, pp. 1834–1837, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Aleksic, A. G. Steigerwalt, J. Bockemuhl, G. P. Huntley-Carter, and D. J. Brenner, “Yersinia rohdei sp. nov. isolated from human and dog feces and surface water,” International Journal of Systematic Bacteriology, vol. 37, no. 4, pp. 327–332, 1987. View at Google Scholar · View at Scopus
  3. C. C. G Aulisio, J. T. Stanfield, S. D. Weagant, and W. E. Hill, “Yersiniosis associated with tofu consumption: serological, biochemical and pathogenicity studies of Yersinia enterocolitica isolates,” Journal of Food Protection, vol. 46, pp. 226–230, 1983. View at Google Scholar
  4. S. Sharma, P. Sachdeva, and J. S. Virdi, “Emerging water-borne pathogens,” Applied Microbiology and Biotechnology, vol. 61, no. 5-6, pp. 424–428, 2003. View at Google Scholar · View at Scopus
  5. H. Fukushima, K. Saito, M. Tsubokura, and K. Otsuki, “Yersinia spp. in surface water in Matsue, Japan,” Zentralblatt fur Bakteriologie Mikrobiologie und Hygiene, vol. 179, no. 3, pp. 235–247, 1984. View at Google Scholar · View at Scopus
  6. D. Grahek-Ogden, B. Schimmer, K. S. Cudjoe, K. Nygård, and G. Kapperud, “Outbreak of Yersinia enterocolitica serogroup O:9 infection and processed pork, Norway,” Emerging Infectious Diseases, vol. 13, no. 5, pp. 754–756, 2007. View at Google Scholar · View at Scopus
  7. E. J. Bottone, “Yersinia enterocolitica: overview and epidemiologic correlates,” Microbes and Infection, vol. 1, no. 4, pp. 323–333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Fukushima, “Yersinia enterocolitica,” in Foodborne Infection and Food Microbiology, H. Nakanishi and T. Maruyama, Eds., pp. 315–334, Chuouhoki-shuppan, Tokyo, Japan, 2009. View at Google Scholar
  9. H. Fukushima, “Direct isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis from meat,” Applied and Environmental Microbiology, vol. 50, no. 3, pp. 710–712, 1985. View at Google Scholar · View at Scopus
  10. H. Fukushima, “Direct isolation of Yersinia pseudotuberculosis from fresh water in Japan,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2688–2690, 1992. View at Google Scholar · View at Scopus
  11. M. Inoue, H. Nakashima, T. Mori, R. Sakazaki, K. Tamura, and M. Tsubokura, “Yersinia pseudotuberculosis infection in the mountain area,” Contributions to microbiology and immunology, vol. 12, pp. 307–310, 1991. View at Google Scholar · View at Scopus
  12. K. Shiozawa, T. Nishina, Y. Miwa, T. Mori, S. Akahane, and K. Ito, “Colonization in the tonsils of swine by Yersinia enterocolitica,” Contributions to Microbiology and Immunology, vol. 12, pp. 63–67, 1991. View at Google Scholar · View at Scopus
  13. M. Inoue, H. Nakashima, and O. Ueba, “Community outbreak of Yersinia pseudotuberculosis,” Microbiology and Immunology, vol. 28, no. 8, pp. 883–891, 1984. View at Google Scholar
  14. M. Tsubokura, K. Otsuki, K. Sato et al., “Special features of distribution of Yersinia pseudotuberculosis in Japan,” Journal of Clinical Microbiology, vol. 27, no. 4, pp. 790–791, 1989. View at Google Scholar · View at Scopus
  15. H. Fukushima, “Yersinia pseudotuberculosis,” in Foodborne Infection and Food Microbiology, H. Nakanishi and T. Maruyama, Eds., pp. 335–346, Chuouhoki-shuppan, Tokyo, Japan, 2009. View at Google Scholar
  16. H. Fukushima, Y. Matsuda, R. Seki et al., “Geographical heterogeneity between Far Eastern and western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudotuberculosis strains,” Journal of Clinical Microbiology, vol. 39, no. 10, pp. 3541–3547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Fredriksson-Ahomaa and H. Korkeala, “Low occurrence of pathogenic Yersinia enterocolitica in clinical, food, and environmental samples: a methodological problem,” Clinical Microbiology Reviews, vol. 16, no. 2, pp. 220–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Fukushima, K. Katsube, Y. Hata, R. Kishi, and S. Fujiwara, “Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR,” Applied and Environmental Microbiology, vol. 73, no. 1, pp. 92–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. C. G. Aulisio, I. J. Mehlman, and A. C. Sanders, “Alkali method for rapid recovery of Yersinia enterocolitica and Yersinia pseudotuberculosis from foods,” Applied and Environmental Microbiology, vol. 39, no. 1, pp. 135–140, 1980. View at Google Scholar · View at Scopus
  20. D. A. Schiemann, “Alkatolerance of Yersinia enterocolitica as a basis for selective isolation from food enrichments,” Applied and Environmental Microbiology, vol. 46, no. 1, pp. 22–27, 1983. View at Google Scholar · View at Scopus
  21. J. S. Paterson and R. Cook, “A method for the recovery of Pateurella pseudotuberculosis from faeces,” The Journal of Pathology and Bacteriology, vol. 85, pp. 241–242, 1963. View at Google Scholar · View at Scopus
  22. Anonymous, “Microbiology of food and animal feeding stuffs—horizontal method for the detection of presumptive pathogenic Yersinia enterocolitica,” EN ISO 10273:2003, International Organization for Standardization, Geneva, Switzerland, 2003. View at Google Scholar
  23. E. de Boer and J. F. M. Nouws, “Slaughter pigs and pork as a source of human pathogenic Yersinia enterocolitica,” International Journal of Food Microbiology, vol. 12, no. 4, pp. 375–378, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Fukushima, “New selective agar medium for isolation of virulent Yersinia enterocolitica,” Journal of Clinical Microbiology, vol. 25, no. 6, pp. 1068–1073, 1987. View at Google Scholar · View at Scopus
  25. K. Kandolo and G. Wauters, “Pyrazinamidase activity in Yersinia enterocolitica and related organisms,” Journal of Clinical Microbiology, vol. 21, no. 6, pp. 980–982, 1985. View at Google Scholar · View at Scopus
  26. W. J. Laird and D. C. Cavanaugh, “Correlation of autoagglutination and virulence of Yersiniae,” Journal of Clinical Microbiology, vol. 11, no. 4, pp. 430–432, 1980. View at Google Scholar · View at Scopus
  27. T. Bogdanovich, E. Carniel, H. Fukushima, and M. Skurnik, “Use of O-antigen gene cluster-specific PCRs for the identification and O-genotyping of Yersinia pseudotuberculosis and s,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5103–5112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Fukushima, K. Maruyama, I. Omori, K. Ito, and S. Kaneko, “Isolation of sucrose-negative Yersinia enterocolitica biotype 3 serotype O3 strains and their pathogenicity,” Current Microbiology, vol. 17, no. 4, pp. 199–202, 1988. View at Google Scholar · View at Scopus
  29. G. Wauters, M. Janssens, A. G. Steigerwalt, and D. J. Brenner, “Yersinia mollaretii sp. nov. and Yersinia bercovieri sp. nov., formerly called Yersinia enterocolitica biogroups 3A and 3B,” International Journal of Systematic Bacteriology, vol. 38, no. 4, pp. 424–429, 1988. View at Google Scholar · View at Scopus
  30. B. W. Blais and L. M. Phillippe, “Comparative analysis of yadA and ail polymerase chain reaction methods for virulent Yersinia enterocolitica,” Food Control, vol. 6, no. 4, pp. 211–214, 1995. View at Google Scholar · View at Scopus
  31. B. W. Wren and S. Tabaqchali, “Detection of pathogenic Yersinia enterocolitica by the polymerase chain reaction,” Lancet, vol. 336, no. 8716, p. 693, 1990. View at Google Scholar · View at Scopus
  32. H. Nakajima, M. Inoue, T. Mori, K. I. Itoh, E. Arakawa, and H. Watanabe, “Detection and identification of Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica by an improved polymerase chain reaction method,” Journal of Clinical Microbiology, vol. 30, no. 9, pp. 2484–2486, 1992. View at Google Scholar · View at Scopus
  33. M. Fredriksson-Ahomaa, A. Stolle, and H. Korkeala, “Molecular epidemiology of Yersinia enterocolitica infections,” FEMS Immunology and Medical Microbiology, vol. 47, no. 3, pp. 315–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. D. Jourdan, S. C. Johnson, and I. V. Wesley, “Development of a fluorogenic 5' nuclease PCR assay for detection of the ail gene of pathogenic Yersinia enterocolitica,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 3750–3755, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Vishnubhatla, D. Y. C. Fung, R. D. Oberst, M. P. Hays, T. G. Nagaraja, and S. J. A. Flood, “Rapid 5' nuclease (TaqMan) assay for detection of virulent strains of Yersinia enterocolitica,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 4131–4135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Fukushima, Y. Tsunomori, and R. Seki, “Duplex real-time SYBR green PCR assays for detection of 17 species of food- or waterborne pathogens in stools,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5134–5146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Wolffs, B. Norling, and P. Rådström, “Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells,” Journal of Microbiological Methods, vol. 60, no. 3, pp. 315–323, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Sen, “Rapid identification of Yersinia enterocolitica in blood by the 5' nuclease PCR assay,” Journal of Clinical Microbiology, vol. 38, no. 5, pp. 1953–1958, 2000. View at Google Scholar · View at Scopus
  39. H. Fukushima, J. Kawase, Y. Etoh et al., “Simultaneous screening of 24 target genes of foodborne pathogens in 35 foodborne outbreaks using multiplex Real-Time SYBR Green PCR analysis,” International Journal of Microbiology, vol. 2010, Article ID 864817, 18 pages, 2010. View at Publisher · View at Google Scholar