Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2011, Article ID 947218, 9 pages
http://dx.doi.org/10.4061/2011/947218
Research Article

Comparative Analyses of Exoproteinases Produced by Three Phytopathogenic Microorganisms

A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia

Received 29 June 2011; Revised 16 September 2011; Accepted 21 September 2011

Academic Editor: Fouad Daayf

Copyright © 2011 Tatiana A. Valueva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tunlid and N. J. Talbot, “Genomics of parasitic and symbiotic fungi,” Current Opinion in Microbiology, vol. 5, no. 5, pp. 513–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Oliver and A. Osbourn, “Molecular dissection of fungal phytopathogenicity,” Microbiology, vol. 141, no. 1, pp. 1–9, 1995. View at Google Scholar · View at Scopus
  3. D. A. Fitzpatrick, M. E. Logue, J. E. Stajich, and G. Butler, “A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis,” BMC Evolutionary Biology, vol. 6, article 99, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. J. Guarro, J. Gené, and A. M. Stchigel, “Developments in fungal taxonomy,” Clinical Microbiology Reviews, vol. 12, no. 3, pp. 454–500, 1999. View at Google Scholar · View at Scopus
  5. N. D. Rawlings, D. P. Tolle, and A. J. Barrett, “MEROPS: the peptidase database,” Nucleic Acids Research, vol. 32, pp. D160–D164, 2004. View at Google Scholar · View at Scopus
  6. D. M. Soanes, I. Alam, M. Cornell et al., “Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis,” PLoS One, vol. 3, no. 6, Article ID e2300, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. R. J. St Leger, L. Joshi, and D. W. Roberts, “Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches,” Microbiology, vol. 143, no. 6, pp. 1983–1992, 1997. View at Google Scholar · View at Scopus
  8. Ya. E. Dunaevskii, E. A. Golubeva, T. N. Gruban, G. A. Belyakova, and M. A. Belozerskii, “Regulation of secretion of extracellular proteinases of filamentous fungi Botritis sinerea Fr,” Journal of Russian Phytopathological Society, vol. 2, no. 1, pp. 39–44, 2001. View at Google Scholar
  9. Ya. E. Dunaevskii, T. N. Gruban, G. A. Belyakova, and M. A. Belozerskii, “Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis,” Microbiology, vol. 75, no. 6, pp. 649–652, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G. Dubovenko, Ya. E. Dunaevskii, M. A. Belozersky, B. Oppert, J. C. Lord, and E. N. Elpidina, “Trypsin-like proteins of the fungi as possible markers of pathogenicity,” Fungal Biology, vol. 114, no. 2-3, pp. 151–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. B. Rao, A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande, “Molecular and biotechnological aspects of microbial proteases,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 597–635, 1998. View at Google Scholar · View at Scopus
  12. J. Sabotič, T. Trček, T. Popovič, and J. Brzin, “Basidiomycetes harbour a hidden treasure of proteolytic diversity,” Journal of Biotechnology, vol. 128, no. 2, pp. 297–307, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Kunitz, “Crystalline soybean trypsin inhibitor. Part II: general properties,” Journal of General Physiology, vol. 30, no. 4, pp. 291–310, 1947. View at Google Scholar
  14. B. F. Erlanger, N. Kokowsky, and W. Cohen, “The preparation and properties of two new chromogenic substrates of trypsin,” Archives of Biochemistry and Biophysics, vol. 95, no. 2, pp. 271–278, 1961. View at Google Scholar · View at Scopus
  15. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Heussen and E. B. Dowdle, “Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates,” Analytical Biochemistry, vol. 102, no. 1, pp. 196–202, 1980. View at Google Scholar · View at Scopus
  17. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  18. B. L. Cohen, “Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans,” Journal of General Microbiology, vol. 79, no. 2, pp. 311–320, 1973. View at Google Scholar · View at Scopus
  19. C. Fortelius and P. Markkanen, “Nutritional regulation of proteinase production in the fungus, Tritirachium album,” Journal of Industrial Microbiology and Biotechnology, vol. 24, no. 6, pp. 369–373, 2000. View at Google Scholar · View at Scopus
  20. S. Kamoun, “Molecular genetics of pathogenic oomycetes,” Eukaryotic Cell, vol. 2, no. 2, pp. 191–199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Y. Rossman and M. E. Palm, “Why are phytophthora and other oomycota not true fungi?” Outlooks on Pest Management, vol. 17, no. 5, pp. 217–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Baldauf, A. J. Roger, I. Wenk-Siefert, and W. F. Doolittle, “A kingdom-level phylogeny of eukaryotes based on combined protein data,” Science, vol. 290, no. 5493, pp. 972–977, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. S. Leger, S. E. Screen, and B. Shams-Pirzadeh, “Lack of host specialization in Aspergillus flavus,” Applied and Environmental Microbiology, vol. 66, no. 1, pp. 320–324, 2000. View at Google Scholar · View at Scopus
  24. R. J. St Leger, J. O. Nelson, and S. E. Screen, “The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity,” Microbiology, vol. 145, no. 10, pp. 2691–2699, 1999. View at Google Scholar · View at Scopus
  25. N. Allain-Boulé, C. A. Lévesque, C. Martinez, R. R. Bélanger, and R. J. Tweddell, “Identification of Pythium species associated with cavity-spot lesions on carrots in eastern Quebec,” Canadian Journal of Plant Pathology, vol. 26, no. 3, pp. 365–370, 2004. View at Google Scholar
  26. R. C. Ploetz, “Pythium splendens is an opportunistic pathogen of carambola, Averrhoa carambola,” Mycopathologia, vol. 157, no. 2, pp. 225–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Revina, G. V. Kladnitskaya, N. G. Gerasimova, E. L. Gvozdeva, and T. A. Valueva, “Protein trypsin inhibitor from potato tubers,” Biochemistry (Moscow), vol. 75, no. 1, pp. 36–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Hu and R. J. St. Leger R.J., “A phylogenomic approach to reconstructing the diversification of serine proteases in fungi,” Journal of Evolutionary Biology, vol. 17, no. 6, pp. 1204–1214, 2004. View at Publisher · View at Google Scholar · View at PubMed
  29. Ya. E. Dunaevskii, T. N. Gruban, G. A. Belyakova, and M.A. Belozerskii, “Enzyme secreted by filamentous fungi: regulation of secretion and purification of extracellular protease of Trichoderma harzianum,” Biochemistry (Moscow), vol. 65, no. 6, pp. 848–853, 2000. View at Google Scholar
  30. M. Richardson and L. Cossins, “Chymotryptic inhibitor I from potatoes: the amino acid sequences of subunits B, C and D,” FEBS Letters, vol. 45, no. 1, pp. 11–13, 1974. View at Publisher · View at Google Scholar
  31. V. V. Mosolov, G. V. Kolosova, T. A. Valueva, and L. A. Dronova, “Trypsin inhibitor from Gleditsia triacanthos (L.),” Biokhimiya, vol. 47, no. 5, pp. 797–802, 1982. View at Google Scholar
  32. T. A. Revina, A. S. Speranskaya, G. V. Kladnitskaya, A. B. Shevelev, and T. A. Valueva, “Subtilisin protein inhibitor from Potato Tubers,” Biochemistry (Moscow), vol. 69, no. 10, pp. 1092–1098, 2004. View at Publisher · View at Google Scholar