Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2012 (2012), Article ID 627036, 8 pages
http://dx.doi.org/10.1155/2012/627036
Research Article

A New Generation Microarray for the Simultaneous Detection and Identification of Yersinia pestis and Bacillus anthracis in Food

1Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Lethbridge, AB, Canada T1J 3Z4
2Department of Biological Sciences, D872 University Hall, 4401 University Drive, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4

Received 23 June 2012; Revised 2 August 2012; Accepted 5 August 2012

Academic Editor: Hin-Chung Wong

Copyright © 2012 Crown. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1521–1544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Call, “Challenges and opportunities for pathogen detection using DNA microarrays,” Critical Reviews in Microbiology, vol. 31, no. 2, pp. 91–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. K. Baxi, S. Baxi, A. Clavijo, K. M. Burton, and D. Deregt, “Microarray-based detection and typing of foot-and-mouth disease virus,” Veterinary Journal, vol. 172, no. 3, pp. 473–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bekal, R. Brousseau, L. Masson, G. Prefontaine, J. Fairbrother, and J. Harel, “Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays,” Journal of Clinical Microbiology, vol. 41, no. 5, pp. 2113–2125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. F. González, M. J. Krug, M. E. Nielsen, Y. Santos, and D. R. Call, “Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1414–1419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Z. Jin, S. Y. Wen, S. H. Chen, F. Lin, and S. Q. Wang, “Detection and identification of intestinal pathogens in clinical specimens using DNA microarrays,” Molecular and Cellular Probes, vol. 20, no. 6, pp. 337–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Maynard, F. Berthiaume, K. Lemarchand et al., “Waterborne pathogen detection by use of oligonucleotide-based microarrays,” Applied and Environmental Microbiology, vol. 71, no. 12, pp. 8548–8557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. J. Wilson, C. L. Strout, T. Z. DeSantis, J. L. Stilwell, A. V. Carrano, and G. L. Andersen, “Sequence-specific identification of 18 pathogenic microorganisms using microarray technology,” Molecular and Cellular Probes, vol. 16, no. 2, pp. 119–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Török, R. V. Tauxe, R. P. Wise et al., “A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars,” Journal of the American Medical Association, vol. 278, no. 5, pp. 389–395, 1997. View at Google Scholar · View at Scopus
  10. T. D. Read, S. N. Peterson, N. Tourasse et al., “The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria,” Nature, vol. 423, no. 6935, pp. 81–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Parkhill, B. W. Wren, N. R. Thomson et al., “Genome sequence of Yersinia pestis, the causative agent of plague,” Nature, vol. 413, no. 6855, pp. 523–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. K. K. Amoako, N. Goji, T. Macmillan et al., “Development of multitarget real-time PCR for the rapid, specific, and sensitive detection of Yersinia pestis in milk and ground beef,” Journal of Food Protection, vol. 73, no. 1, pp. 18–25, 2010. View at Google Scholar · View at Scopus
  13. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kawasaki, P. M. Fratamico, N. Horikoshi et al., “Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157:H7 in ground pork samples,” Foodborne Pathogens and Disease, vol. 7, no. 5, pp. 549–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Woubit, T. Yehualaeshet, T. Habtemariam, and T. Samuel, “Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens,” Journal of Food Protection, vol. 75, pp. 660–670, 2012. View at Google Scholar
  16. T. Kostić, B. Stessl, M. Wagner, A. Sessitsch, and L. Bodrossy, “Microbial diagnostic microarray for food- and water-borne pathogens,” Microbial Biotechnology, vol. 3, no. 4, pp. 444–454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Suo, Y. He, G. Paoli, A. Gehring, S. I. Tu, and X. Shi, “Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens,” Molecular and Cellular Probes, vol. 24, no. 2, pp. 77–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wang, Y. Han, Y. Li et al., “Yersinia genome diversity disclosed by Yersinia pestis genome-wide DNA microarray,” Canadian Journal of Microbiology, vol. 53, no. 11, pp. 1211–1221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Zhou, Y. Han, E. Dai et al., “Identification of signature genes for rapid and specific characterization of Yersinia pestis,” Microbiology and Immunology, vol. 48, no. 4, pp. 263–269, 2004. View at Google Scholar · View at Scopus
  20. N. R. Treff, J. Su, X. Tao, L. E. Northrop, and R. T. Scott, “Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses,” Molecular Human Reproduction, vol. 17, no. 6, pp. 335–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. K. Rhee, X. Liu, L. Wu, S. C. Chong, X. Wan, and J. Zhou, “Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 4303–4317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. H. Kim, B. K. Lee, Y. D. Kim, S. K. Rhee, and Y. C. Kim, “Detection of representative enteropathogenic bacteria, Vibrio spp., pathogenic Escherichia coli, Salmonella spp., Shigella spp., and Yersinia enterocolitica, using a virulence factor gene-based oligonucleotide microarray,” Journal of Microbiology, vol. 48, no. 5, pp. 682–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Loy and L. Bodrossy, “Highly parallel microbial diagnostics using oligonucleotide microarrays,” Clinica Chimica Acta, vol. 363, no. 1-2, pp. 106–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. J. Kim, S. H. Park, T. H. Lee, B. H. Nahm, Y. R. Kim, and H. Y. Kim, “Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics,” Biosensors and Bioelectronics, vol. 24, no. 2, pp. 238–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Myers, J. Gaba, and S. F. Al-Khaldi, “Molecular identification of Yersinia enterocolitica isolated from pasteurized whole milk using DNA microarray chip hybridization,” Molecular and Cellular Probes, vol. 20, no. 2, pp. 71–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Panicker, D. R. Call, M. J. Krug, and A. K. Bej, “Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays,” Applied and Environmental Microbiology, vol. 70, no. 12, pp. 7436–7444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. X. W. Wang, L. Zhang, L. Q. Jin et al., “Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens,” Applied Microbiology and Biotechnology, vol. 76, no. 1, pp. 225–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Burton, O. J. Oshota, E. North et al., “Development of a multipathogen oligonucleotide microarray for detection of Bacillus anthracis,” Molecular and Cellular Probes, vol. 19, no. 5, pp. 349–357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Sergeev, M. Distler, S. Courtney et al., “Multipathogen oligonucleotide microarray for environmental and biodefense applications,” Biosensors and Bioelectronics, vol. 20, no. 4, pp. 684–698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tomioka, M. Peredelchuk, X. Zhu et al., “A multiplex polymerase chain reaction microarray assay to detect bioterror pathogens in blood,” Journal of Molecular Diagnostics, vol. 7, no. 4, pp. 486–494, 2005. View at Google Scholar · View at Scopus
  31. V. Chizhikov, A. Rasooly, K. Chumakov, and D. D. Levy, “Microarray analysis of microbial virulence factors,” Applied and Environmental Microbiology, vol. 67, no. 7, pp. 3258–3263, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. X. Hong, L. F. Jiang, Y. S. Hu, D. Y. Fang, and H. Y. Guo, “Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections,” Journal of Microbiological Methods, vol. 58, no. 3, pp. 403–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Sergeev, M. Distler, M. Vargas, V. Chizhikov, K. E. Herold, and A. Rasooly, “Microarray analysis of Bacillus cereus group virulence factors,” Journal of Microbiological Methods, vol. 65, no. 3, pp. 488–502, 2006. View at Publisher · View at Google Scholar · View at Scopus