Table of Contents Author Guidelines Submit a Manuscript
Journal of Pathogens
Volume 2012 (2012), Article ID 738590, 13 pages
Research Article

Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses

1Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
3Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
4Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Russia

Received 23 July 2012; Accepted 8 September 2012

Academic Editor: Timothy J. Johnson

Copyright © 2012 Gerard Kian-Meng Goh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002–4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M) and nucleocapsid (N). This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.