Table of Contents
Journal of Petroleum Engineering
Volume 2013 (2013), Article ID 151898, 16 pages
http://dx.doi.org/10.1155/2013/151898
Research Article

Optimization of Multiple Hydraulically Fractured Horizontal Wells in Unconventional Gas Reservoirs

Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Received 27 May 2013; Accepted 2 August 2013

Academic Editor: Alireza Bahadori

Copyright © 2013 Wei Yu and Kamy Sepehrnoori. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Miskimins, “Design and life-cycle considerations for unconventional-reservoir wells,” SPE Production and Operations, vol. 24, no. 2, pp. 353–359, 2009. View at Google Scholar · View at Scopus
  2. G. Waters, B. Dean, R. Downie, K. Kerrihard, L. Austbo, and B. McPherson, “Simultaneous hydraulic fracturing of adjacent horizontal wells in the woodford shale,” in Proceedings of the SPE Hydraulic Fracturing Technology Conference, pp. 694–715, Woodlands, Tex, USA, January 2009. View at Scopus
  3. M. J. Kaiser, “Haynesville shale play economic analysis,” Journal of Petroleum Science and Engineering, vol. 82-83, pp. 75–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Montgomery, D. M. Jarvie, K. A. Bowker, and R. M. Pollastro, “Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential,” AAPG Bulletin, vol. 89, no. 2, pp. 155–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Segatto and I. Colombo, “Use of reservoir simulation to help gas shale reservoir estimation,” in Proceedings of the International Petroleum Technology Conference (IPTC '11), Bangkok, Thailand, 2011.
  6. S. Esmaili, A. Kalantari-Dahaghi, and S. D. Mohaghegh, “Modeling and history matching of hydrocarbon production from Marcellus shale using data mining and pattern recognition technologies,” in Proceedings of the SPE Eastern Regional Meeting (SPE '12), Lexington, Ky, USA, 2012.
  7. M. Rafiee, M. Y. Soliman, and E. Pirayesh, “Hydraulic fracturing design and optimization: a modification to zipper frac,” in Proceedings of the SPE Eastern Regional Meeting (SPE '12), Lexington, Ky, USA, 2012.
  8. O. C. Díaz de Souza, A. J. Sharp, R. C. Martinez et al., “Integrated unconventional shale gas reservoir modeling: a worked example from the Haynesville Shale, De Soto Parish, North Lousiana,” in Proceedings of the Americas Unconventional Resources Conference (SPE '12), Pittsburgh, Pa, USA, 2012.
  9. J. Harpel, L. Barker, J. Fontenot, C. Carroll, S. Thomson, and K. Olson, “Case history of the Fayetteville shale completions,” in Proceedings of the SPE Hydraulic Fracturing Technology Conference (SPE '12), The Woodlands, Tex, USA, 2012.
  10. H. Ramakrishnan, R. Yuyan, and J. Belhadi, “Real-time completion optimization of multiple laterals in gas shale reservoirs: Integration of geology, log, surface seismic, and microseismic information,” in Proceedings of the SPE Hydraulic Fracturing Technology Conference, pp. 691–705, The Woodlands, Tex, USA, January 2011. View at Scopus
  11. S. Tavassoli, W. Yu, F. Javadpour, and K. Sepehrnoori, “Well screen and optimal time of refracturing: a Barnett shale well,” Journal of Petroleum Engineering, vol. 2013, pp. 1–10, 2013. View at Google Scholar
  12. W. Yu and K. Sepehrnoori, “Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs,” in Proceedings of the SPE Western Regional and AAPG Pacific Section Meeting (SPE '13), Monterey, Calif, USA,, 2013.
  13. W. Yu and K. Sepehrnoori, “An efficient reservoir simulation approach to design and optimize unconventional gas production,” in Proceedings of the SPE Western Regional and AAPG Pacific Section Meeting (SPE '13), Monterey, Calif, USA,, 2013.
  14. B. Rubin, “Accurate simulation of non-darcy flow in stimulated fractured shale reservoirs,” in Proceedings of the SPE Western Regional Meeting (SPE '10), pp. 19–34, Anaheim, Calif, USA, May 2010. View at Scopus
  15. C. L. Cipolla, E. P. Lolon, J. C. Erdle, and B. Rubin, “Reservoir modeling in shale-gas reservoirs,” SPE Reservoir Evaluation and Engineering, vol. 13, no. 4, pp. 638–653, 2010. View at Google Scholar · View at Scopus
  16. R. D. Evans and F. Civan, “Characterization of non-Darcy multiphase flow in petroleum bearing formations,” U.S. DOE Contract DE-AC22-90BC14659, School of Petroleum and Geological Engineering, University of Oklahoma, 1994. View at Google Scholar
  17. R. Schweitzer and H. I. Bilgesu, “The role of economics on well and fracture design completions of marcellus shale wells,” in Proceedings of the SPE Eastern Regional Meeting (SPE '09), pp. 423–428, September 2009. View at Scopus
  18. CMG, IMEX User’s Guide, Computer Modeling Group, 2011.
  19. J. P. Seidle and L. E. Arri, “Use of conventional reservoir models for coalbed methane simulation,” in Proceedings of the CIM/SPE International Technical Meeting (SPE '90), Calgary, Canada, 1990.
  20. H. A. Al-Ahmadi, S. Aramco, and R. A. Wattenbarger, “Triple-porosity models: one further step towards capturing fractured reservoirs heterogeneity,” in Proceedings of the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition (SPE '11), Al-Khobar, Saudi Arabia, 2011.
  21. R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Hoboken, NJ, USA, 2002.
  22. J. Kiefer and J. Wolfowitz, “Optimum designs in regression problems,” The Annals of Mathematical Statistics, vol. 30, no. 2, pp. 271–294, 1959. View at Google Scholar