Table of Contents
Journal of Petroleum Engineering
Volume 2013 (2013), Article ID 354630, 9 pages
http://dx.doi.org/10.1155/2013/354630
Research Article

Corrosion Inhibition of Tubing Steel during Acidization of Oil and Gas Wells

1Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India
2Department of Physics, Post Graduate College, Ghazipur 233001, India

Received 13 September 2012; Accepted 14 November 2012

Academic Editor: Jorge Ancheyta

Copyright © 2013 M. Yadav et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. Poling, “Infrared studies of protective films formed by acetylenic corrosion inhibitors,” Journal of The Electrochemical Society, vol. 114, pp. 1209–1214, 1967. View at Publisher · View at Google Scholar
  2. K. D. Neemla, R. C. Saxena, and A. Jayaraman, “Corrosion inhibitor studies on steels in hydrochloric acid,” Corrosion Prevention and Control, vol. 6, pp. 69–76, 1992. View at Google Scholar
  3. W. W. Frenier, F. B. Growcock, and V. R. Lopp, “α-alkenylphenones—a new class of acid corrosion inhibitors,” Corrosion, vol. 44, no. 9, pp. 590–598, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. W. W. Frenier, Eur. Patent, 047400, 1972.
  5. A. 1. Cizek, U.S. Patent 4997040, 1991.
  6. R. F. Monroe, C. H. Kuchera, and B. D. Oates, U.S. Patent, 3007454,1963.
  7. S. Ghareba and S. Omanovic, “Interaction of 12-aminododecanoic acid with a carbon steel surface: towards the development of “green” corrosion inhibitors,” Corrosion Science, vol. 52, no. 6, pp. 2104–2113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Sathiya Priya, V. S. Muralidharan, and A. Subramania, “Development of novel acidizing inhibitors for carbon steel corrosion in 15% boiling hydrochloric acid,” Corrosion, vol. 64, no. 6, pp. 541–552, 2008. View at Publisher · View at Google Scholar
  9. P. Bommersbach, C. Alemany-Dumont, J. P. Millet, and B. Normand, “Hydrodynamic effect on the behaviour of a corrosion inhibitor film: characterization by electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 19, pp. 4011–4018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Qu, Z. Hao, L. Li, W. Bai, Y. Liu, and Z. Ding, “Synthesis and evaluation of Tris-hydroxymethyl-(2-hydroxybenzylidenamino)-methane as a corrosion inhibitor for cold rolled steel in hydrochloric acid,” Corrosion Science, vol. 51, no. 3, pp. 569–574, 2009. View at Publisher · View at Google Scholar
  11. M. Bodanszky, Peptide Chemistry: A Practical Text Book, Springer, Berlin, Germany, 1988.
  12. I. N. Putolova, S. A. Balezin, and V. P. Barannik, Metallic Corrosion Inhibitors, Pergamon Press, New York, NY, USA, 1960.
  13. M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, and A. Gandomi, “Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution,” Corrosion Science, vol. 50, no. 8, pp. 2172–2181, 2008. View at Publisher · View at Google Scholar
  14. M. Lebrini, M. Traisnel, M. Lagrenée, B. Mernari, and F. Bentiss, “Inhibitive properties, adsorption and a theoretical study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid,” Corrosion Science, vol. 50, no. 2, pp. 473–479, 2008. View at Publisher · View at Google Scholar
  15. M. Ozcan, “AC impedance measurement of cystine adsorption at mild steel/sulfuric acid interface as corrosion inhibitor,” Journal of Solid State Electrochemistry, vol. 12, pp. 1653–1661, 2008. View at Google Scholar
  16. I. Dehri and M. Özcan, “The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds,” Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 316–323, 2006. View at Publisher · View at Google Scholar
  17. S. S. Al-Juaid, “Inhibition of corrosion of carbon steel 1018 in acid medium with ethoxylated aliphatic alcohols,” Chemistry and Technology of Fuels and Oils, vol. 47, no. 1, pp. 58–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Olivares, N. V. Likhanova, B. Gómez et al., “Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment,” Applied Surface Science, vol. 252, no. 8, pp. 2894–2909, 2006. View at Publisher · View at Google Scholar
  19. H. Ashassi-Sorkhabi, M. R. Majidi, and K. Seyyedi, “Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution,” Applied Surface Science, vol. 225, no. 1–4, pp. 176–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Li, S. Deng, and H. Fu, “Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 6, pp. 1344–1355, 2009. View at Publisher · View at Google Scholar
  21. M. Lebrini, M. Lagrenée, H. Vezin, M. Traisnel, and F. Bentiss, “Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds,” Corrosion Science, vol. 49, no. 5, pp. 2254–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Macdonald, W. B. Johnson, and J. R. Macdonald, Eds., Impedance Spectroscopy, John Wiley & Sons, New York, NY, USA, 1987.
  23. I. L. Rosenfield, Corrosion Inhibitors, McGraw-Hill, New York, NY, USA, 1981.
  24. M. MaCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of The Electrochemical Society, vol. 119, pp. 146–154, 1972. View at Publisher · View at Google Scholar
  25. G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, “Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel,” Corrosion, vol. 52, no. 11, pp. 853–856, 1996. View at Google Scholar · View at Scopus