Table of Contents
Journal of Petroleum Engineering
Volume 2013, Article ID 803706, 8 pages
http://dx.doi.org/10.1155/2013/803706
Research Article

A Field Study on Simulation of CO2 Injection and ECBM Production and Prediction of CO2 Storage Capacity in Unmineable Coal Seam

Department of Petroleum and Natural Gas Engineering, West Virginia University, Morgantown, WV 26505, USA

Received 22 August 2012; Revised 18 November 2012; Accepted 22 November 2012

Academic Editor: Serhat Akin

Copyright © 2013 Qin He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Stevens, D. Spector, and P. Riemer, “Enhanced coalbed methane recovery using CO2 injection: worldwide resource and CO2 sequestration potential,” in Proceedings of the 6th International Oil & Gas Conference and Exhibition in China (IOGCEC '98), pp. 489–501, Beijing, China, November 1998. View at Scopus
  2. J. Ennis-King and L. Paterson, “Engineering aspects of geological sequestration of carbon dioxide,” in Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, pp. 134–146, Melbourne, Australia, October 2002. View at Scopus
  3. F. M. Orr Jr., “Storage of carbon dioxide in geologic formations,” Journal of Petroleum Technology, vol. 56, no. 9, pp. 90–97, 2004. View at Google Scholar · View at Scopus
  4. C. Sinayuç and F. Gümrah, “Modeling of ECBM recovery from amasra coalbed in Zonguldak Basin, Turkey,” in Proceedings of the Canadian International Petroleum Conference, Alberta, Canada, 2008. View at Publisher · View at Google Scholar
  5. R. Petrusak, D. Riestenberg, P. Goad et al., “World class CO2 sequestration potential in saline formations, oil and gas fields, coal, and shale: the US southeast regional carbon sequestration partnership has it all,” in Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, pp. 136–153, November 2009. View at Scopus
  6. C. L. Liner, “Carbon capture and sequestration: overview and offshore aspects,” in Proceedings of the Offshore Technology Conference (OTC '10), pp. 3511–3514, May 2010. View at Scopus
  7. J. P. Seidle, “Reservoir engineering aspects of CO2 sequestration in coals,” in Proceedings of the SPE/CERI Gas Technology Symposium, Alberta, Canada, 2000.
  8. H. J. M. Pagnier, F. Van Bergen, E. Kreft, L. G. H. Van Der Meer, and H. J. Simmelink, “Field experiment of ECBM-CO2 in the upper Silesian Basin of Poland (RECOPOL),” in Proceedings of the 67th European Association of Geoscientists and Engineers, EAGE Conference and Exhibition, incorporating SPE (EUROPEC '05), pp. 3013–3015, Madrid, Spain, June 2005. View at Scopus
  9. G. A. Hernandez, R. O. Bello, D. A. McVay et al., “Evaluation of the technical and economic feasibility of CO2 sequestration and enhanced coalbed-methane recovery in Texas low-rank coals,” in Proceedings of the SPE Gas Technology Symposium: Mature Fields to New Frontiers, pp. 515–530, Alberta, Canada, May 2006. View at Scopus
  10. G. J. Koperna and D. Riestenberg, “Carbon dioxide enhanced coalbed methane and storage: is there promise?” in Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, pp. 183–195, November 2009. View at Scopus
  11. J. Q. Shi and S. Durucan, “A model for changes in coalbed permeability during primary and enhanced methane recovery,” SPE Reservoir Evaluation and Engineering, vol. 8, no. 4, pp. 291–299, 2005. View at Google Scholar · View at Scopus
  12. S. Mazumder and K. H. Wolf, “Differential swelling and permeability change of coal in response to CO2 injection for ECBM,” International Journal of Coal Geology, vol. 74, no. 2, pp. 123–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Dean, “Reservoir engineering for geologists: coalbed methane fundamentals,” Reservoir Issue. 2007, 11.
  14. Storing CO2 in Unminable Coal Seams, IEA Greenhouse Gas R&D Programme.
  15. K. Aminian and S. Ameri, “Predicting production performance of CBM reservoirs,” Journal of Natural Gas Science and Engineering, vol. 1, no. 1-2, pp. 25–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Zulkamain, Simulation study of the effect of well spacing, permeability, anisotropy, Palmar and Mansoori model on coalbed methane production. [M.S. thesis], Texas A&M University, 2005.
  17. I. Palmer and J. Mansoori, “How permeability depends on stress and pore pressure in coalbeds: a new model,” SPE Reservoir Engineering, vol. 1, no. 6, pp. 539–543, 1998. View at Google Scholar · View at Scopus
  18. “CO2 storage with ECBM study begins in West Virginia,” http://www.carboncapturejournal.com/displaynews.php?NewsID=442.
  19. D. J. Remner, T. Ertekin, W. Sung, and G. R. King, “Parametric study of the effects of coal seam properties on gas drainage efficiency,” SPE Reservoir Engineering, vol. 1, no. 6, pp. 633–646, 1986. View at Google Scholar · View at Scopus
  20. A. N. Okeke, Sensitivity analysis of modeling parameters that affect the dual peaking behavior in coalbed methane reservoirs [M.S. thesis], Texas A&M University, 2005.
  21. Q. P. Huy, K. Sasaki, Y. Sugai et al., “Numerical simulation of CO2 enhanced coal bed methane recovery for A vietmese coal seam,” JournaL of NoveL Carbon Resource Sciences, vol. 2, pp. 1–7, 2010. View at Google Scholar
  22. D. Jasinge and P. G. Ranjith, “Carbon dioxide sequestration in geologic formation with special reference to sequestration in deep coal seams,” in Proceedings of the 45th U.S. Rock Mechanics/Geomechanics Symposium, 2011.