Table of Contents
Journal of Petroleum Engineering
Volume 2013 (2013), Article ID 817293, 10 pages
Research Article

Well Screen and Optimal Time of Refracturing: A Barnett Shale Well

1Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, USA
2Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA

Received 30 January 2013; Accepted 1 April 2013

Academic Editor: Jorge Ancheyta

Copyright © 2013 Shayan Tavassoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Gas-production decline in hydraulically fractured wells in shale formations necessitates refracturing. However, the vast number of wells in a field makes selection of the right well challenging. Additionally, the success of a refracturing job depends on the time to refracture a shale-gas well during its production life. In this paper we present a numerical simulation approach to development of a methodology for screening a well and to determine the optimal time of refracturing. We implemented our methodology for a well in the Barnett Shale, where we had access to data. The success of a refracturing job depends on reservoir characteristics and the initial induced fracture network. Systematic sensitivity analyses were performed so that the characteristics of a shale-gas horizontal well could be specified as to the possibility of its candidacy for a successful refracturing job. Different refracturing scenarios must be studied in detail so that the optimal design might be determined. Given the studied trends and implications for a production indicator, the optimal time for refracturing can then be suggested for the studied well. Numerical-simulation results indicate significant improvement (on the order of 30%) in estimated ultimate recovery (EUR) after refracturing, given presented screen criteria and optimal-time selection.