Table of Contents
Journal of Petroleum Engineering
Volume 2013, Article ID 942597, 9 pages
http://dx.doi.org/10.1155/2013/942597
Research Article

Effect of Bed Deformation on Natural Gas Production from Hydrates

Mechanical Engineering Department, TKM College of Engineering, Kollam, Kerala 691005, India

Received 18 December 2012; Accepted 27 March 2013

Academic Editor: Jorge Ancheyta

Copyright © 2013 Mohamed Iqbal Pallipurath. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “DGH Annual Activity Report 2010-2011,” Hydrocarbon exploration and production activities.
  2. Y. F. Makogon, “Natural gas hydrates: a promising source of energy,” Journal of Natural Gas Science and Engineering, vol. 2, no. 1, pp. 49–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. Yousif, H. H. Abass, M. S. Selim, and E. D. Sloan, “Experimental and theoretical investigation of methane gas hydrate dissociation in porous media,” in Proceedings of the SPE Annual Technical Conference & Exhibition, pp. 571–18320, October 1988. View at Scopus
  4. M. S. Selim and E. D. Sloan, “Heat and mass transfer during the dissociation of hydrate in porous media,” AIChE Journal, vol. 35, pp. 1049–1052, 1989. View at Google Scholar
  5. G. G. Tsypkin, “Mathematical model for dissociation of gas hydrates coexisting with gas in strata,” Doklady Physics, vol. 46, no. 11, pp. 806–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Ji, G. Ahmadi, and D. H. Smith, “Natural gas production from hydrate decomposition by depressurization,” Chemical Engineering Science, vol. 56, no. 20, pp. 5801–5814, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Bai and Q. Li, “Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization,” Science China Technological Sciences, vol. 53, no. 9, pp. 2469–2476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Sun, N. Nanchary, and K. K. Mohanty, “1-D modeling of hydrate depressurization in porous media,” Transport in Porous Media, vol. 58, no. 3, pp. 315–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kimoto, F. Oka, T. Fushita, and M. Fujiwaki, “A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation,” Computers and Geotechnics, vol. 34, no. 4, pp. 216–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kimoto, F. Oka, and T. Fushita, “A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation,” International Journal of Mechanical Sciences, vol. 52, no. 2, pp. 365–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Vysniauskas and P. R. Bishnoi, “A kinetic study of methane hydrate formation,” Chemical Engineering Science, vol. 38, no. 7, pp. 1061–1072, 1983. View at Google Scholar · View at Scopus
  12. P. Englezos, N. Kalogerakis, P. D. Dholabhai, and P. R. Bishnoi, “Kinetics of formation of methane and ethane gas hydrates,” Chemical Engineering Science, vol. 42, no. 11, pp. 2647–2658, 1987. View at Google Scholar · View at Scopus
  13. H. C. Kim, P. R. Bishnoi, R. A. Heidemann, and S. S. H. Rizvi, “Kinetics of methane hydrate decomposition,” Chemical Engineering Science, vol. 42, no. 7, pp. 1645–1653, 1987. View at Google Scholar · View at Scopus
  14. J. S. Pic, J. M. Herri, and M. Cournil, “Experimental influence of kinetic inhibitors on methane hydrate particle size distribution during batch crystallization in water,” Canadian Journal of Chemical Engineering, vol. 79, no. 3, pp. 374–383, 2001. View at Google Scholar · View at Scopus
  15. P. D. Dholabhai, N. Kalogerakis, and P. R. Bishnoi, “Kinetics of methane hydrate formation in aqueous electrolyte solutions,” Canadian Journal of Chemical Engineering, vol. 71, no. 1, pp. 68–74, 1993. View at Google Scholar · View at Scopus
  16. N. Gnanendran and R. Amin, “Modelling hydrate formation kinetics of a hydrate promoter-water-natural gas system in a semi-batch spray reactor,” Chemical Engineering Science, vol. 59, no. 18, pp. 3849–3863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Kashchiev and A. Firoozabadi, “Driving force for crystallization of gas hydrates,” Journal of Crystal Growth, vol. 241, no. 1-2, pp. 220–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. H. Hancock, T. S. Collett, and S. R. Dallimore, “Overview of thermal-stimulation production test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well,” 2005.
  19. B. S. Pierce and T. S. Collett, “Energy resource potential of natural gas hydrates,” in Proceedings of the 5th Conference Exposition on Petroleum Geophysics, pp. 899–903, Hyderabad, India, 2004.