Table of Contents
Journal of Petroleum Engineering
Volume 2015 (2015), Article ID 895786, 28 pages
http://dx.doi.org/10.1155/2015/895786
Research Article

Analytical Modeling and Contradictions in Limestone Reservoirs: Breccias, Vugs, and Fractures

1Programa Doctoral, Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, 07730 City of Mexico, DF, Mexico
2Secretaría de Posgrado, Facultad de Ingeniería, Universidad Autónoma de México, Avenida Universidad 3000, 04515 City of Mexico, DF, Mexico

Received 24 September 2014; Revised 13 February 2015; Accepted 23 February 2015

Academic Editor: Lixin Cheng

Copyright © 2015 Nelson Barros-Galvis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Wenzhi, H. Suyun, L. Wei, W. Tongshan, and L. Yongxin, “Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: a further discussion,” Natural Gas Industry, vol. 34, no. 4, pp. 1–9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Manrique, M. Gurfinkel, and V. Muci, “Enhanced oil recovery field experiences in carbonate reservoirs in the United States,” in Proceedings of the 25th Annual Workshop & Symposium Collaborative Project on Enhanced Oil Recovery, International Energy Agency, Stavanger, Norway, September 2004.
  3. J. M. Grajales, D. J. Morán, P. Padilla et al., “The Lomas Tristes Breccia: a KT impact-related breccia from southern Mexico,” Geological Society of America: Abstracts with Programs, vol. 28, p. A-183, 1996. View at Google Scholar
  4. G. Murillo-Muñetón, J. M. Grajales-Nishimura, E. Cedillo-Pardo, J. García-Hernández, and S. García-Hernández, “Stratigraphic architecture and sedimentology of the main oil-producing stratigraphic interval at the Cantarell Oil Field: the K/T boundary sedimentary succession,” in Proceedings of the SPE International Petroleum Conference and Exhibition, Paper SPE 74431, pp. 643–649, Villahermosa, México, February 2002. View at Scopus
  5. G. Levresse, J. Bourdet, J. Tritlla, J. Pironon, and A. C. Chavez, “Evolución de los Fluidos Acuosos e Hidrocarburos en un Campo Petrolero Afectado por Diapiros Salinos,” in Plays y Yacimientos de Aceite y Gas en Rocas Carbonatadas, pp. 15–17, AMGP, Ciudad del Carmen, Mexico, 2006. View at Google Scholar
  6. S. Rivas-Gómez, J. Cruz-Hernández, J. A. González-Guevara et al., “Block size and fracture permeability in naturally fractured reservoirs,” in Proceedings of the 10th International Petroleum Exhibition and Conference, Paper SPE 78502, Abu Dhabi, UAE, October 2002.
  7. E. Manceau, E. Delamaide, J. C. Sabathier et al., “Implementing convection in a reservoir simulator: a key feature in adequately modeling the exploitation of the cantarell complex,” SPE Reservoir Evaluation & Engineering, vol. 4, no. 2, pp. 128–134, 2001, SPE 71303-PA. View at Publisher · View at Google Scholar
  8. L. Cruz, J. Sheridan, E. Aguirre, and E. Celis, “Relative contribution to fluid flow from natural fractures in the cantarell field, Mexico,” in Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Paper SPE-122182-MS, Cartagena de Indias, Colo, USA, May-June 2009.
  9. G. H. Neale and W. K. Nader, “The permeability of a uniformly vuggy porous,” SPE Journal, vol. 13, no. 2, pp. 69–74, 1974. View at Publisher · View at Google Scholar
  10. J. W. Koenraad and M. Bakker, “Fracture and vuggy porosity,” in Proceedings of the 56th Annual Fall Technical Conference and Exhibition and Conference, Paper SPE 10332, San Antonio, Tex, USA, October 1981.
  11. Y.-S. Wu, Y. Di, Z. Kang, and P. Fakcharoenphol, “A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs,” Journal of Petroleum Science and Engineering, vol. 78, no. 1, pp. 13–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. McKeown, R. S. Haszeldine, and G. D. Couples, “Mathematical modelling of groundwater flow at Sellafield, UK,” Engineering Geology, vol. 52, no. 3-4, pp. 231–250, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gudmundsson, Rock Fractures in Geological Processes, chapters 15, 16, Cambridge University Press, Cambridge, UK, 2011.
  14. R. M. Iverson, “The physics of debris flows,” Reviews of Geophysics, vol. 35, no. 3, pp. 245–296, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Enos, “Cretaceous debris reservoirs, poza rica field, Veracruz, México,” in Carbonate Petroleum Reservoirs, P. O. Roehl and P. W. Carbonate, Eds., Casebooks in Earth Sciences, chapter 28, pp. 455–469, Springer, New York, NY, USA, 1985. View at Publisher · View at Google Scholar
  16. J. Urrutia-Fucugauchi, L. Perez-Cruz, and A. Camargo-Zanoguera, “Oil exploration in the Southern Gulf of Mexico and the Chicxulub impact,” Geology Today, vol. 29, no. 5, pp. 182–189, 2013. View at Publisher · View at Google Scholar
  17. S. I. Mayr, H. Burkhardt, Y. Popov, and A. Wittmann, “Estimation of hydraulic permeability considering the micro morphology of rocks of the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico),” International Journal of Earth Sciences, vol. 97, no. 2, pp. 385–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. W. Stearns, Fractured Reservoirs Schools Notes, AAPG, Great Falls, Mont, USA, 1992.
  19. R. A. Nelson, Geologic Analysis of Naturally Fractured Reservoirs, Gulf Publishing Company, Houston, Tex, USA, 2nd edition, 2001.
  20. H. Fossen, Structural Geology, chapter 7, Cambridge University Press, New York, NY, USA, 1st edition, 2010.
  21. A. Alhuthali, S. Lyngra, D. Widjaja, U. F. Al-Otaibi, and L. Godail, “A holistic approach to detect and characterize fractures in a mature middle eastern oil field,” Saudi Aramco Journal of Technology, 2011. View at Google Scholar
  22. J. Lee, J. B. Rollins, and J. P. Spivey, Pressure Transient Testing, vol. 9, chapter 1, SPE, Richardson, Tex, USA, 2003.
  23. J. Voelker, A reservoir characterization of Arab-D Super-K as a discrete fracture network flow system, Ghawar Field, Saudi Arabia [Ph.D. dissertation], Stanford University, Stanford, Calif, USA, 2004.
  24. G. A. McMechan, G. C. Gaynor, and R. B. Szerbiak, “Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs,” Geophysics, vol. 62, no. 3, pp. 786–796, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. J. K. Pringle, J. A. Howell, D. Hodgetts, A. R. Westerman, and D. M. Hodgson, “Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art,” First Break, vol. 24, no. 3, pp. 33–42, 2006. View at Google Scholar · View at Scopus
  26. D. W. Stearns and M. Friedman, “Reservoirs in fractured rock: geologic exploration methods,” in M 16: Stratigraphic Oil and Gas Fields—Classification, Exploration Methods, and Case Histories, pp. 82–106, AAPG Special Volumes, 1972. View at Google Scholar
  27. F. Mees, R. Swennen, M. van Geet, and P. Jacobs, Applications of X-ray Computed Tomography in the Geosciences, The Geological Society, London, UK, 1st edition, 2003.
  28. W. Baker, “Flow in fissured formation,” in Proceedings of the 5th World Petroleum Congress, Sec. II/E, pp. 379–393, 1955.
  29. M. Potter, D. Wiggert, and B. Ramadan, Mechanics of Fluids, Cengage Learning, Boston, Mass, USA, 4th edition, 2012.
  30. P. A. Witherspoon, J. S. Y. Wang, K. Iwai, and J. E. Gale, “Validity of cubic law for fluid flow in a deformable rock fracture,” Water Resources Research, vol. 16, no. 6, pp. 1016–1024, 1980. View at Publisher · View at Google Scholar · View at Scopus
  31. R. W. Zimmerman and I. Yeo, “Fluid flow in rock fractures: from the navier-stokes equations to the cubic law,” in Dynamics of Fluids in Fractured Rock, B. Faybishenko, P. A. Witherspoon, and S. M. Benson, Eds., American Geophysical Union, Washington, DC, USA, 2000. View at Google Scholar
  32. I. Currie, Fundamental Mechanics of Fluids, Marcel Dekker, New York, NY, USA, 3rd edition, 2003.
  33. I. I. Bogdanov, V. V. Mourzenko, J.-F. Thovert, and P. M. Adler, “Pressure drawdown well tests in fractured porous media,” Water Resources Research, vol. 39, no. 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Muskat, The Flow of Homogeneous Fluids through Porous Media, J.W. Edward, Ann Arbor, Mich, USA, 1st edition, 1946.
  35. N. H. Woodcock and K. Mort, “Classification of fault breccias and related fault rocks. Rapid communication,” Geological Magazine, vol. 145, no. 3, pp. 435–440, 2008. View at Publisher · View at Google Scholar
  36. M. Kinoshita, H. Tobin, J. Ashi et al., Expedition 316 Site C0004. Expedition 316 Scientists: Proceedings of the Integrated Ocean Drilling Program, vol. 314-315-316, Integrated Ocean Drilling Program Management International, Washington, DC, USA, 2009.
  37. T. E. Faber, Fluid Dynamics for Physicists, Cambridge University Press, Cambridge, UK, 1st edition, 1995. View at MathSciNet
  38. E. Levi, Mecánica de los Fluidos, Introducción Teórica a la Hidráulica Moderna, Universidad Autónoma de México, Mexico City, Mexico, 1st edition, 1965.
  39. G. Keller, T. Adatte, W. Stinnesbeck et al., “Chixculub impact predates the K-T boundary mass extinction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 11, pp. 3753–3758, 2004. View at Publisher · View at Google Scholar
  40. G. Keller, T. Adatte, W. Stinnesbeck et al., “More evidence that the Chicxulub impact predates the K/T mass extinction,” Meteoritics & Planetary Science, vol. 39, no. 7, pp. 1127–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Grajales Nishimura, E. Cedillo-Pardo, C. Rosales-Domínguez et al., “Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields,” Geology, vol. 28, no. 4, pp. 307–310, 2000. View at Publisher · View at Google Scholar
  42. J. M. Grajales-Nishimura, G. Murillo-Muñetón, C. Rosales-Domínguez et al., “The Cretaceous-Paleogene boundary Chicxulub impact: its effect on carbonate sedimentation on the western margin of the Yucatan platform and nearby areas,” AAPG Memoir, no. 90, pp. 315–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Rebolledo-Vieyra and J. Urrutia-Fucugauchi, “Magnetostratigraphy of the impact breccias and post-impact carbonates from borehole Yaxcopoil-1, Chicxulub impact crater, Yucatán, Mexico,” Meteoritics & Planetary Science, vol. 39, no. 6, pp. 821–829, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. A. Kring, F. Hörz, L. Zurcher, and J. Urrutia, “Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico,” Meteoritics & Planetary Science, vol. 39, no. 6, pp. 879–897, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Wittman, T. Kenkmann, R. T. Schmitt, L. Hecht, and D. Stöffler, “Impact-related dike breccia lithologies in the ICDP drill core Yaxcopoil-1, Chicxulub impact structure, Mexico,” Meteoritics & Planetary Science, vol. 39, no. 6, pp. 931–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. B. O. Dressler, V. L. Sharpton, J. Morgan et al., “Investigating a 65-Ma-old smoking gun: deep drilling of the Chicxulub impact structure,” Eos Transactions AGU, vol. 84, pp. 125–131, 2003. View at Google Scholar
  47. M. G. Tuchscherer, M. U. Reimold, C. Koeberl, and R. L. Gibson, “Major and trace element characteristics of impactites from the Yaxcopoil-1 borehole, Chicxulub structure, Mexico,” Meteoritics & Planetary Science, vol. 39, no. 6, pp. 955–978, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Stöffler, N. A. Artemieva, B. A. Ivanov et al., “Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling,” Meteoritics & Planetary Science, vol. 39, no. 7, pp. 1035–1067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Stinnesbeck, G. Keller, T. Adatte, M. Harting, U. Kramar, and D. Stüben, “Yucatán subsurface stratigraphy based on the Yaxcopoil-1 drill hole,” in Proceedings of the EGS/AGU/EUG Joint Assembly, Abstract #10868, Geophysical Research Abstracts 5, Nice, France, April 2003.
  50. W. Stinnesbeck, G. Keller, T. Adatte et al., “Yaxcopoil-1 and the Chicxulub impact,” International Journal of Earth Sciences (Geol Rundsch), vol. 93, no. 6, pp. 1042–1065, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Lopez-Ramos, “Geological summary of the Yucatán Peninsula,” in The Ocean Basins and Margins, Volume 3: The Gulf of Mexico and the Caribbean, A. E. M. Nairn and F. G. Stehli, Eds., pp. 257–282, Plenum Press, New York, NY, USA, 1975. View at Google Scholar
  52. E. Lopez-Ramos, Geología de México, Universidad Nacional Autónoma de México, Mexico City, Mexico, 3rd edition, 1983.
  53. G. T. Penfield and Z. Camargo, “Definition of a major igneous zone in the central Yucatán platform with aeromagnetics and gravity,” in Technical Program, Abstracts and Biographies (Society of Exploration Geophysicists), p. 37, Society of Exploration Geophysicists, Los Angeles, Calif, USA, 1981. View at Google Scholar
  54. A. R. Hildebrand, G. T. Penfield, D. A. Kring et al., “Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico,” Geology, vol. 19, no. 9, pp. 867–871, 1991. View at Google Scholar
  55. Pemex Exploración y Producción: Las Reservas de Hidrocarburos en México, México D.F., Mexico, 2014.
  56. A. Cervantes and L. Montes, “The stratigraphic-sedimentology model of upper cretaceous to oil exploration field ‘Campeche Oriente’,” in Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Paper SPE 169461-MS, Maracaibo, Venezuela, May 2014.
  57. R. Barton, K. Bird, J. G. Hernández et al., “High-impact reservoirs,” Oilfield Review, vol. 21, no. 4, pp. 14–29, 2009. View at Google Scholar · View at Scopus
  58. E. Ortuño, “Características de la brecha híbrida (estéril, BP0 o transicional) y su potencial como roca yacimiento en la sonda de campeche,” in Congreso Mexicano del Petróleo, Ciudad de México, México, September 2012.
  59. Z. U. A. Warsi, Fluid Dynamics, Theoretical and Computational Approaches, CRC Press, New York, NY, USA, 2nd edition, 1999. View at MathSciNet
  60. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, NY, USA, 2nd edition, 2002.
  61. J. Urrutia-Fucugauchi, A. Camargo-Zanoguera, L. Pérez-Cruz, and G. Pérez-Cruz, “The chicxulub multi-ring impact crater, Yucatán carbonate platform, Gulf of Mexico,” Geofísica Internacional, vol. 50, no. 1, pp. 99–127, 2011. View at Google Scholar · View at Scopus
  62. F. Shen, A. Pino, J. Hernandez, A. V. Bustos, and J. R. Avendano, “Characterization and modeling study of the carbonate-fractured reservoir in the cantarell field, Mexico,” in Proceedings of the SPE Annual Technical Conference and Exhibition, Paper SPE 115907, Denver, Colo, USA, September 2008. View at Publisher · View at Google Scholar
  63. P. Villaseñor-Rojas, Structural evolution and sedimentological and diagenetic controls in the lower cretaceous reservoirs of the Cardenas Field, Mexico [PhD dissertation], Ecole Doctorale Sciences et Ingenierie De l'Université de Cergy-Pontoise, 2003.
  64. J. F. Douglas, J. M. Gasiorek, J. A. Swaffield et al., Fluid Mechanics, Pearson Prentice Hall, New York, NY, USA, 5th edition, 2005.
  65. P. W. Choquette and L. C. Pray, “Geologic Nomenclature and classification of porosity in sedimentary carbonates,” American Association of Petroleum Geologists Bulletin, vol. 54, no. 2, pp. 207–250, 1970. View at Google Scholar · View at Scopus
  66. F. J. Lucia, Carbonate Reservoir Characterization an Integrated Approach, Springer, Berlin, Germany, 2nd edition, 2007.
  67. A. Moctezuma, Déplacements immiscibles dans des carbonates vacuolaires: expérimentations et modélisation [Thèse de Doctorat], Institut du Physique du Globe de Paris, Paris, France, 2003.
  68. A. de Swaan O, “Analytical solutions for determining naturally fractured reservoir properties by well testing,” Society of Petroleum Engineers Journal, vol. 16, no. 3, pp. 117–122, 1976. View at Publisher · View at Google Scholar · View at Scopus
  69. E. R. Rangel-German and A. R. Kovscek, “Matrix-fracture shape factors and multiphase-flow properties of fractured porous media,” in Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, SPE 95105-MS, Rio de Janeiro, Brazil, June 2005. View at Publisher · View at Google Scholar
  70. C. Perez-Rosales, “Determination of geometrical characterisitics of porous media,” Journal of Petroleum Technology, no. 8, pp. 413–416, 1969. View at Google Scholar
  71. R. Martinez-Angeles, L. Hernández-Escobedo, and C. Perez-Rosales, “3D quantification of vugs and fractures networks in limestone cores,” in Proceedings of the SPE Annual Technical Conference and Exhibition, pp. 3833–3848, San Antonio, Texas, USA, October 2002. View at Scopus
  72. V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill Book, New York, NY, USA, 1st edition, 1961.