Table of Contents
Journal of Polymers
Volume 2013, Article ID 650837, 11 pages
http://dx.doi.org/10.1155/2013/650837
Research Article

Green Synthesis of Hydroxyethyl Cellulose-Stabilized Silver Nanoparticles

National Research Centre, Textile Research Division, El-Behooth Street, Dokki, P.O. 12311, Cairo, Egypt

Received 28 March 2013; Revised 13 June 2013; Accepted 14 June 2013

Academic Editor: Joo Hyun Kim

Copyright © 2013 M. A. El-Sheikh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. I. Wasif and S. K. Laga, “Use of nano silver as an antimicrobial agent for cotton,” Autex Research Journal, vol. 9, no. 1, pp. 5–13, 2009. View at Google Scholar · View at Scopus
  2. D. Tessier, I. Radu, and M. Filteau, “Antimicrobial fabrics coated with nano-sized silver salt crystals,” in Proceedings of the NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech, M. Laudon and B. Romanowicz, Eds., pp. 762–764, Anaheim, Calif, USA, May 2005. View at Scopus
  3. M. Gouda, “Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration,” Journal of Industrial Textiles, vol. 41, no. 3, pp. 222–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. M. H. El-Rafie, A. A. Mohamed, T. I. Shaheen, and A. Hebeish, “Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics,” Carbohydrate Polymers, vol. 80, no. 3, pp. 779–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts et al., “Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Breen, R. Burch, C. Hardacre, and C. J. Hill, “Structural investigation of the promotional effect of hydrogen during the selective catalytic reduction of NOx with hydrocarbons over Ag/Al2O3 catalysts,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 4805–4807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Arve, F. Klingstedt, K. Eränen et al., “Analysis of the state and size of silver on alumina in effective removal of NOx from oxygen rieh exhaust gas,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 4, pp. 1076–1083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Musi, P. Massiani, D. Brouri, J.-M. Trichard, and P. Da Costa, “On the characterisation of silver species for SCR of NOx with ethanol,” Catalysis Letters, vol. 128, no. 1-2, pp. 25–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, vol. 89, no. 8, pp. 1861–1873, 1989. View at Google Scholar · View at Scopus
  10. L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chemical Reviews, vol. 93, no. 8, pp. 2693–2730, 1993. View at Google Scholar · View at Scopus
  11. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Google Scholar · View at Scopus
  12. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Dallas, V. K. Sharma, and R. Zboril, “Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives,” Advances in Colloid and Interface Science, vol. 166, no. 1-2, pp. 119–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. DeSimone, “Practical approaches to green solvents,” Science, vol. 297, no. 5582, pp. 799–803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Poliakoff and P. Anastas, “A principled stance,” Nature, vol. 413, no. 6853, p. 257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Vankar and D. Shukla, “Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric,” Applied Nanoscience, vol. 2, no. 2, pp. 163–168, 2012. View at Publisher · View at Google Scholar
  18. Z. Sadowski, “Biosynthesis and application of silver and gold nanoparticles,” in Silver Nanoparticles, D. P. Perez, Ed., pp. 257–276, In Tech, 2010. View at Google Scholar
  19. S. Kaviya, J. Santhanalakshmi, and B. Viswanathan, “Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract,” Materials Letters, vol. 67, no. 1, pp. 64–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, no. 2, pp. 915–920, 2012. View at Publisher · View at Google Scholar
  22. M. Z. Kassaee, A. Akhavan, N. Sheikh, and R. Beteshobabrud, “γ-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities,” Radiation Physics and Chemistry, vol. 77, no. 9, pp. 1074–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Valodkar, A. Bhadoria, J. Pohnerkar, M. Mohan, and S. Thakore, “Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles,” Carbohydrate Research, vol. 345, no. 12, pp. 1767–1773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Hebeish, M. E. El-Naggar, M. M. G. Fouda, M. A. Ramadan, S. S. Al-Deyab, and M. H. El-Rafie, “Highly effective antibacterial textiles containing green synthesized silver nanoparticles,” Carbohydrate Polymers, vol. 86, no. 2, pp. 936–940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Djoković, R. Krsmanović, D. K. Božanić et al., “Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer,” Colloids and Surfaces B, vol. 73, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Raveendran, J. Fu, and S. L. Wallen, “A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles,” Green Chemistry, vol. 8, no. 1, pp. 34–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Huang, Q. Yuan, and X. Yang, “Preparation and characterization of metal-chitosan nanocomposites,” Colloids and Surfaces B, vol. 39, no. 1-2, pp. 31–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Chen, J. Wang, X. Zhang, and Y. Jin, “Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate,” Materials Chemistry and Physics, vol. 108, no. 2-3, pp. 421–424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Liu, Z. Zhang, H. Liu, W. He, X. Ge, and M. Wang, “Silver nanorods using HEC as a template by γ-irradiation technique and absorption dose that changed their nanosize and morphology,” Materials Letters, vol. 61, no. 8-9, pp. 1801–1804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Singh and P. K. Khanna, “In situ synthesis of silver nano-particles in polymethylmethacrylate,” Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 367–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. V. Goia, “Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions,” Journal of Materials Chemistry, vol. 14, no. 4, pp. 451–458, 2004. View at Google Scholar · View at Scopus
  35. W. Wang, J. Wang, Y. Kang, and A. Wang, “Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone,” Composites B, vol. 42, no. 4, pp. 809–818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Reuben, “Description and analysis of hydroxyethyl cellulose,” Macromolecules, vol. 17, no. 2, pp. 156–161, 1984. View at Publisher · View at Google Scholar
  37. J. S. Bradley, G. Schmid, D. V. Talapin, E. V. Shevchenko, and H. Weller, “Syntheses and characterizations: 3. 2 synthesis of metal nanoparticles,” in Nanoparticles From Theory to Application, pp. 185–238, Wiley-VCH Verlag GmbH & Co. KGaA, 2005. View at Publisher · View at Google Scholar
  38. E. S. Abdel-Halim, M. H. El-Rafie, and S. S. Al-Deyab, “Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles,” Carbohydrate Polymers, vol. 85, no. 3, pp. 692–697, 2011. View at Publisher · View at Google Scholar · View at Scopus