Table of Contents
Journal of Polymers
Volume 2013 (2013), Article ID 684584, 8 pages
http://dx.doi.org/10.1155/2013/684584
Research Article

Hydrogen Sorption onto Hypercrosslinked Polymer Decorated with Metal-Organic Framework

1Department of Applied Chemistry, Defence Institute of Advanced Technology, Girinagar, Pune 411 025, India
2Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411 025, India

Received 23 March 2013; Accepted 1 July 2013

Academic Editor: Marc Visseaux

Copyright © 2013 Renuka R. Gonte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ramachandran and R. K. Menon, “An overview of industrial uses of hydrogen,” International Journal of Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998. View at Google Scholar · View at Scopus
  2. L. J. Murray, M. Dinc, and J. R. Long, “Hydrogen storage in metal-organic frameworks,” Chemical Society Reviews, vol. 38, no. 5, pp. 1294–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, “Hydrogen storage by carbon materials,” Journal of Power Sources, vol. 159, no. 2, pp. 781–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Li and R. T. Yang, “Hydrogen storage in low silica type X zeolites,” Journal of Physical Chemistry B, vol. 110, no. 34, pp. 17175–17181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Y. Lee, C. D. Wood, D. Bradshaw, M. J. Rosseinsky, and A. I. Cooper, “Hydrogen adsorption in microporous hypercrosslinked polymers,” Chemical Communications, no. 25, pp. 2670–2672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. C. Rowsell and O. M. Yaghi, “Metal-organic frameworks: a new class of porous materials,” Microporous and Mesoporous Materials, vol. 73, no. 1-2, pp. 3–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Zhao, D. Yuan, and H. Zhou, “The current status of hydrogen storage in metal-organic frameworks,” Energy and Environmental Science, vol. 1, no. 2, pp. 222–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Zuttel, “Hydrogen storage and distribution systems,” Mitigation and Adaptation Strategies for Global Change, vol. 12, no. 3, pp. 343–365, 2007. View at Publisher · View at Google Scholar
  9. O. K. Farha, A. M. Spokoyny, B. G. Hauser et al., “Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer,” Chemistry of Materials, vol. 21, no. 14, pp. 3033–3035, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. A. Davankov, S. V. Rogozhin, and M. P. Tsyurupa, “Macronet polystyrene structures for ionites and method of producing same,” US, 3729457, 1971.
  11. C. D. Wood, B. Tan, A. Trewin et al., “Microporous organic polymers for methane storage,” Advanced Materials, vol. 20, no. 10, pp. 1916–1921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, “Reticular synthesis and the design of new materials,” Nature, vol. 423, no. 6941, pp. 705–714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. H. K. Chae, D. Y. Siberio-Pérez, J. Kim et al., “A route to high surface area, porosity and inclusion of large molecules in crystals,” Nature, vol. 427, no. 6974, pp. 523–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Uemura, N. Yanai, and S. Kitagawa, “Polymerization reactions in porous coordination polymers,” Chemical Society Reviews, vol. 38, no. 5, pp. 1228–1236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Rodrigues, I. Mihalcea, C. Volkringer, T. Loiseau, and M. Visseaux, “Water-free neodymium 2,6-naphthalenedicarboxylates coordination complexes and their application as catalysts for isoprene polymerization,” Inorganic Chemistry, vol. 51, no. 1, pp. 483–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Gonte, K. Balasubramanian, P. C. Deb, and P. Singh, “Synthesis and characterization of mesoporous hypercrosslinked poly (styrene co-maleic anhydride) microspheres,” International Journal of Polymeric Materials, vol. 61, no. 12, pp. 919–930, 2012. View at Publisher · View at Google Scholar
  17. H. Li, M. Eddaoudi, T. L. Groy, and O. M. Yaghi, “Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate),” Journal of the American Chemical Society, vol. 120, no. 33, pp. 8571–8572, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA, 1953.
  19. R. Gonte, K. Balasubramanian, and P. C. Deb, “Adsorption properties of crosslinked mesoporous (styrene-maleic acid)-Zn (II) complexes,” International Journal of Industrial Engineering and Technology, vol. 3, no. 3, pp. 279–288, 2011. View at Google Scholar
  20. D. Saha, S. Deng, and Z. Yang, “Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach,” Journal of Porous Materials, vol. 16, no. 2, pp. 141–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Panella and M. Hirscher, “Hydrogen physisorption in metal-organic porous crystals,” Advanced Materials, vol. 17, no. 5, pp. 538–541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, and O. M. Yaghi, “Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units,” Journal of the American Chemical Society, vol. 127, no. 5, pp. 1504–1518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Loiseau, H. Muguerra, G. Férey, M. Haouas, and F. Taulelle, “Synthesis and structural characterization of a new open-framework zinc terephthalate Zn3(OH)2(bdc)2·2DEF, with infinite Zn–(μ3-OH)–Zn chains,” Journal of Solid State Chemistry, vol. 178, no. 3, pp. 621–628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. M. Thomas, “Hydrogen adsorption and storage on porous materials,” Catalysis Today, vol. 120, no. 3-4, pp. 389–398, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. L. Rosi, J. Eckert, M. Eddaoudi et al., “Hydrogen storage in microporous metal-organic frameworks,” Science, vol. 300, no. 5622, pp. 1127–1129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Pedicini, A. Sacc, A. Carbone, and E. Passalacqua, “Hydrogen storage based on polymeric material,” International Journal of Hydrogen Energy, vol. 36, no. 15, pp. 9062–9068, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Li, X. Huang, R. Gong et al., “Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers,” International Journal of Hydrogen Energy, vol. 37, no. 17, pp. 12813–12820, 2012. View at Publisher · View at Google Scholar
  28. J. Lia, S. Chengb, Q. Zhaoa, P. Longa, and J. Dong, “Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5,” International Journal of Hydrogen Energy, vol. 34, pp. 1377–1382, 2009. View at Publisher · View at Google Scholar
  29. P. C. Deb, L. D. Rajput, and P. K. Singh, “Polyaniline encapsulated microporous polymer beads and their vapor and gas adsorption behavior,” Journal of Applied Polymer Science, vol. 104, no. 1, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at Scopus