Table of Contents
Journal of Polymers
Volume 2013, Article ID 792035, 9 pages
http://dx.doi.org/10.1155/2013/792035
Research Article

Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles and Utilization to Impart Antibacterial Finishing for Wool and Acrylic Fabrics

Textile Research Division, National Research Centre, P.O. Box 12311, El-Behooth Street, Dokki, Giza, Egypt

Received 31 March 2013; Revised 10 July 2013; Accepted 16 July 2013

Academic Editor: Long Yu

Copyright © 2013 M. A. El-Sheikh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh, and S. V. Manorama, “Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications,” Chemistry of Materials, vol. 20, no. 7, pp. 2455–2460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Y. Yeo and S. H. Jeong, “Preparation and characterization of polypropylene/silver nanocomposite fibers,” Polymer International, vol. 52, pp. 1053–1057, 2003. View at Google Scholar
  3. W. Chen, W. Cai, L. Zhang, G. Wang, and L. Zhang, “Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica,” Journal of Colloid and Interface Science, vol. 238, no. 2, pp. 291–295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Frattini, N. Pellegri, D. Nicastro, and O. De Sanctis, “Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes,” Materials Chemistry and Physics, vol. 94, no. 1, pp. 148–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. S. Abdel-Halim, M. H. El-Rafie, and S. S. Al-Deyab, “Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles,” Carbohydrate Polymers, vol. 85, no. 3, pp. 692–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Chen, S. Y. Luo, W. C. Xu, and X. L. Zhang, “Green synthesis of nano-size silver particles colloidal sol,” Materials Science Forum, vol. 675, pp. 1041–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. El-Rafie, T. I. Shaheen, A. A. Mohamed, and A. Hebeish, “Bio-synthesis and applications of silver nanoparticles onto cotton fabrics,” Carbohydrate Polymers, vol. 90, pp. 915–920, 2012. View at Google Scholar
  8. A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, “Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles,” Carbohydrate Polymers, vol. 82, no. 3, pp. 933–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Sadowski, “Biosynthesis and application of silver and gold nanoparticles,” in Silver Nanoparticles, D. P. Perez, Ed., pp. 257–276, InTech, 2010. View at Google Scholar
  10. M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity,” Colloids and Surfaces B, vol. 73, no. 2, pp. 332–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Vankar and D. Shukla, “Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric,” Applied Nanoscience, vol. 2, pp. 163–168, 2012. View at Google Scholar
  14. K. Vijayaraghavan, S. P. K. Nalini, N. U. Prakash, and D. Madhankumar, “One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum,” Colloids and Surfaces B, vol. 94, pp. 114–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Balan and D. Burget, “Synthesis of metal/polymer nanocomposite by UV-radiation curing,” European Polymer Journal, vol. 42, no. 12, pp. 3180–3189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Balan, M. Jin, J.-P. Malval, H. Chaumeil, A. Defoin, and L. Vidal, “Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye,” Macromolecules, vol. 41, no. 23, pp. 9359–9365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Balan, J.-P. Malval, R. Schneider, D. Le Nouen, and D.-J. Lougnot, “In-situ fabrication of polyacrylate-silver nanocomposite through photoinduced tandem reactions involving eosin dye,” Polymer, vol. 51, no. 6, pp. 1363–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Progress in Organic Coatings, vol. 62, no. 3, pp. 351–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, “Synthesis of nanocomposite polymers by UV-radiation curing,” Polymer, vol. 46, no. 17, pp. 6640–6648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Keller, C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. Miehe-Brendle, “Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins,” Polymer, vol. 45, no. 22, pp. 7437–7447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Yagci, O. Sahin, T. Ozturk, S. Marchi, S. Grassini, and M. Sangermano, “Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives,” Reactive and Functional Polymers, vol. 71, no. 8, pp. 857–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. B. Wurzburg, “Introduction,” in Modified Starches: Properties and Uses, O. B. Wurzburg, Ed., CRC Press, 1987. View at Google Scholar
  23. J. S. Bradley, G. Schmid, D. V. Talapin, E. V. Shevchenko, and H. Weller, “Syntheses and characterizations: 3.2 synthesis of metal nanoparticles,” in Nanoparticles from Theory to Application, pp. 185–238, Wiley-VCH GmbH & Co. KGaA, 2005. View at Google Scholar
  24. J. Lin, S. Qiu, K. Lewis, and A. M. Klibanov, “Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine,” Biotechnology and Bioengineering, vol. 83, no. 2, pp. 168–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Parthasarathi and S. P. Borkar, “Antibacterial and UV protection finishes of textiles by metal and metal oxide nano particles-A review,” Colourage, vol. 54, no. 7, pp. 43–45, 2007. View at Google Scholar · View at Scopus
  26. R. Stevanato and R. Tedesco, “Leacril Saniwear, new antibacterial acrylic fibre from Motefibre,” Revista de Quimica Textil, vol. 151, pp. 76–77, 2002. View at Google Scholar
  27. P. Zhu, S.-Y. Sui, B. Wang, J.-B. Zhang, and C.-H. Dong, “Development of nano-antimicrobial dry acrylic fibers and raschel blankets,” Maofang Keji, no. 4, pp. 38–40, 2006. View at Google Scholar · View at Scopus
  28. N. Hideo and N. Tetsuo, “Trichophyton-inhibiting silver-containing acrylonitrile fibre structures,” vol 082945, Japan, 2005.
  29. K. Hiroki and N. Hideo, “Photocatalytic active antibacterial acrylonitrile polymer fibres manufactured by heat-treating acrylonitrile polymer fibres containing antibacterial metal compounds at pH 1–6,” vol 089968, Japan, 2001.
  30. X. Yao-Nan and Z. Han-min, “Preparation and characterization of the polyacrylonitrile antibacterial fibre containing multi-functional groups,” Gongeng Gaofenzi Xuebao, vol. 14, pp. 109–111, 2001. View at Google Scholar
  31. T. Tetsuya, S. Taketomi, S. Katsuya et al., “Enhancement of the antibacterial activity of acrylic fibres containing alumina-zinc silicate,” Bokin Bobai, vol. 34, 2006. View at Google Scholar
  32. A. Medovic, M. Kostic, P. Skundric, R. Jovanovic, B. Popovic, and P. Dordevic, “Obtaining of biologically-activated fibers with antibacterial acitivity,” Hemijska Vlakna, vol. 36, pp. 3–6, 1996. View at Google Scholar · View at Scopus
  33. S. Abdel-Fattah, E. El-Khatib, A. A. Kantouch, and I. El-Zawawi, “Finishing of wool fabrics with metals ions and silver nanoparticles to acquire antimicrobial and UV-protection properties,” Research Journal of Textile and Apparel, vol. 14, pp. 53–64, 2010. View at Google Scholar
  34. H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, “A study on multifunctional wool textiles treated with nano-sized silver,” Journal of Materials Science, vol. 42, no. 19, pp. 8020–8024, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Tang, J. Wang, S. Xu et al., “Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric,” Journal of Colloid and Interface Science, vol. 356, no. 2, pp. 513–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Montazer, A. Behzadnia, E. Pakdel, M. K. Rahimi, and M. B. Moghadam, “Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool,” Journal of Photochemistry and Photobiology B, vol. 103, no. 3, pp. 207–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Maleknia, A. A. Aala, and K. Yousefi, “Antibacterial properties of nanosized silver colloidal solution on wool fabric,” Asian Journal of Chemistry, vol. 22, no. 8, pp. 5925–5929, 2010. View at Google Scholar · View at Scopus
  38. Q. Cheng, C. Li, V. Pavlinek, P. Saha, and H. Wang, “Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties,” Applied Surface Science, vol. 252, no. 12, pp. 4154–4160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Messaoud, E. Chadeau, C. Brunon et al., “Photocatalytic generation of silver nanoparticles and application to the antibacterial functionalization of textile fabrics,” Journal of Photochemistry and Photobiology A, vol. 215, no. 2-3, pp. 147–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. El-Sheikh and H. M. Ibrahim, “New eco friendly methods for the preparation of nano silver and its utilization in different textile processes,” in Photosynthesis of Silver Nanoparticles—II. Photocuring of Cotton Fabrics Finished with Silver Nanoparticles for Durable Antibacterial Finishing, M. A. El-Sheikh, Ed., pp. 39–69, National Research Centre, Cairo, Egypt, 2012. View at Google Scholar
  41. R. A. Bottom, J. T. Guthrie, and P. N. Green, “The influence of H-donors on the photodecomposition of selected water-soluble photoinitiators,” Polymer Photochemistry, vol. 6, no. 1, pp. 59–70, 1985. View at Google Scholar · View at Scopus
  42. R. A. Bottom, J. T. Guthrie, and P. N. Green, “The photochemically induced grafting of 2-hydroxyethyl acrylate onto regenerated cellulose films from aqueous solutions,” Polymer Photochemistry, vol. 6, no. 2, pp. 111–123, 1985. View at Google Scholar · View at Scopus
  43. M. A. El-Sheikh, Synthesis of new polymeric materials based on water-soluble starch composites [Ph.D. thesis], Faculty of Science, Cairo University, Cairo, Egypt, 1999.
  44. M. A. El-Sheikh, “Photo grafting of acrylamide onto carboxymethyl starch I. Utilization of the product in easy care finishing of cotton fabric,” in Proceedings of the 3rd Aachen-Dresden International Textile Conference, pp. 1–30, Aachen, Germany, 2009.
  45. M. A. El-Sheikh, M. A. Ramadan, and A. El-Shafie, “Photo oxidation of rice starch II. Using a water soluble photo initiator,” Carbohydrate Polymers, vol. 78, no. 2, pp. 235–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. ElSheikh and J. T. Guthrie, “Graft copolymerization of acrylic acid onto carboxymethyl starch using UV-irradiation,” in Proceedings of the 213th National Meeting, vol. 213, p. 36, ACS, San Francisco, Calif, USA, 1997.
  47. M. A. El-Sheikh, “Carboxymethylation of maize starch at mild conditions,” Carbohydrate Polymers, vol. 79, no. 4, pp. 875–881, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. El-Sheikh, “New eco friendly methods for the preparation of nano silver and its utilization in different textile processes,” in Photosynthesis of Silver Nanoparticles—I. Preparation and Characterization, M. A. El-Sheikh, Ed., pp. 7–38, National Research Centre, Cairo, Egypt, 2012. View at Google Scholar
  49. G. C. Daul, R. M. Reinhardt, and J. D. Reid, “Preparation of soluble yarns by the carboxymethylation of cotton,” Textile Research Journal, vol. 23, pp. 719–726, 1953. View at Google Scholar
  50. N. Y. Abou-Zeid, A. I. Waly, N. G. Kandile, A. A. Rushdy, M. A. El-Sheikh, and H. M. Ibrahim, “Preparation, characterization and antibacterial properties of cyanoethylchitosan/cellulose acetate polymer blended films,” Carbohydrate Polymers, vol. 84, no. 1, pp. 223–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011. View at Publisher · View at Google Scholar · View at Scopus