Table of Contents
Journal of Polymers
Volume 2017, Article ID 3134681, 8 pages
https://doi.org/10.1155/2017/3134681
Research Article

Synthesis, Properties, and Humidity Resistance Enhancement of Biodegradable Cellulose-Containing Superabsorbent Polymer

School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China

Correspondence should be addressed to Junbo Li; moc.361@tiwilbj

Received 19 August 2016; Revised 12 October 2016; Accepted 14 December 2016; Published 10 January 2017

Academic Editor: Dirk Kuckling

Copyright © 2017 Hongliang Guan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kono and S. Fujita, “Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride,” Carbohydrate Polymers, vol. 87, no. 4, pp. 2582–2588, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ding and K. Gong, “Super-absorbent resin preparation utilizing spent mushroom substrates,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 1098–1103, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Wang, Z.-Q. Song, and S.-B. Shang, “Characterization and biodegradability of amphoteric superabsorbent polymers,” Journal of Applied Polymer Science, vol. 107, no. 6, pp. 4116–4120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. L. A. Gugliemelli, M. O. Weaver, and C. R. Russell, Salt-resistant thickeners comprising base-saponified starch-polyacrylonitrile graft copolymers: U.S. Patent 3,425,971[P]. 1969-2-4.
  5. K. Kabir, H. Mirzadeh, M. J. Zohuriaan-Mehr, and M. Daliri, “Chitosan-modified nanoclay-poly(AMPS) nanocomposite hydrogels with improved gel strength,” Polymer International, vol. 58, no. 11, pp. 1252–1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Shen, T. Wang, Y. Chen, M. Wang, and G. Jiang, “Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete,” Construction and Building Materials, vol. 99, pp. 246–253, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. G. Han, P. L. Yang, Y. P. Luo, S. M. Ren, L. X. Zhang, and L. Xu, “Porosity change model for watered super absorbent polymer-treated soil,” Environmental Earth Sciences, vol. 61, no. 6, pp. 1197–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhou, Y. Wang, Z. Liu, and Q. Huang, “Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 995–1002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Chang, B. Duan, J. Cai, and L. Zhang, “Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery,” European Polymer Journal, vol. 46, no. 1, pp. 92–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Bulut, G. Akçay, D. Elma, and I. E. Serhatli, “Synthesis of clay-based superabsorbent composite and its sorption capability,” Journal of Hazardous Materials, vol. 171, no. 1–3, pp. 717–723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhang, L. Wang, and A. Wang, “Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly(acrylic acid-co-sodium acrylate),” Macromolecular Materials and Engineering, vol. 291, no. 6, pp. 612–620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Changchaivong and S. Khaodhiar, “Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite,” Applied Clay Science, vol. 43, no. 3, pp. 317–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, “A convenient one-step preparation of chitosan-poly(sodium acrylate-co-acrylamide) hydrogel hybrids with super-swelling properties,” Journal of Applied Polymer Science, vol. 99, no. 4, pp. 1615–1619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zhou, S. Fu, L. Zhang, and H. Zhan, “Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM),” Carbohydrate Polymers, vol. 97, no. 2, pp. 429–435, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. H. A. Essawy, M. B. M. Ghazy, F. A. El-Hai, and M. F. Mohamed, “Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients,” International Journal of Biological Macromolecules, vol. 89, pp. 144–151, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Fekete, J. Borsa, E. Takács, and L. Wojnárovits, “Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent,” Radiation Physics and Chemistry, vol. 118, pp. 114–119, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. F. F. Montesano, A. Parente, P. Santamaria, A. Sannino, and F. Serio, “Biodegradable superabsorbent hydrogel increaseswater retention properties of growing media and plant growth,” Agriculture and Agricultural Science Procedia, vol. 4, pp. 451–458, 2015. View at Publisher · View at Google Scholar
  18. S. Mohammadi-Khoo, P. N. Moghadam, A. R. Fareghi, and N. Movagharnezhad, “Synthesis of a cellulose-based hydrogel network: characterization and study of urea fertilizer slow release,” Journal of Applied Polymer Science, vol. 133, no. 5, Article ID 42935, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bakass, J. P. Bellat, A. Mokhlisse, and G. Bertrand, “The adsorption of water vapor on super absorbent product at low temperatures and low mass,” Journal of Applied Polymer Science, vol. 100, no. 2, pp. 1450–1456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhang, H. Wang, C. Gao, X. Li, and L. Li, “Highly ordered mesoporous carbon nanomatrix as a new approach to improve the oral absorption of the water-insoluble drug, simvastatin,” European Journal of Pharmaceutical Sciences, vol. 49, no. 5, pp. 864–872, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Slane, J. Vivanco, J. Meyer, H.-L. Ploeg, and M. Squire, “Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 29, pp. 451–461, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. Mathis, Z. Bi, C. A. Bridges et al., “Enhanced visible-light absorption of mesoporous TiO2 by co-doping with transition-metal/nitrogen ions,” in MRS Online Proceeding Library Archive, vol. 1547 of MRS Proceedings, pp. 115–119, Cambridge University Press, January 2013. View at Publisher · View at Google Scholar
  23. D. Sun, W. Jiang, Y. Wang et al., “Synthesis and enhanced electromagnetic wave absorption properties of Fe3O4@ZnO mesoporous spheres,” MRS Proceedings, vol. 1663, 2014. View at Publisher · View at Google Scholar
  24. W. Cui, Y. Li, Y. Ma, and G. Yu, “Research on the dehydration property of one of super absorbent resin on the swill oil,” Modern Applied Science, vol. 4, no. 10, article no. 71, 2010. View at Publisher · View at Google Scholar
  25. H. Ye, J.-Q. Zhao, and Y.-H. Zhang, “Novel degradable superabsorbent materials of silicate/acrylic-based polymer hybrids,” Journal of Applied Polymer Science, vol. 91, no. 2, pp. 936–940, 2004. View at Publisher · View at Google Scholar · View at Scopus