Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2009 (2009), Article ID 897364, 9 pages
http://dx.doi.org/10.1155/2009/897364
Research Article

Genetic Variability and Phylogenetic Relationships within Trypanosoma cruzi I Isolated in Colombia Based on Miniexon Gene Sequences

1Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, A.A. 4976. Carrera 1a. No. 18-A-10, Bogotá, Colombia
2Grupo de Parasitología, Instituto Nacional de Salud, Avenida calle 26 No. 51-20 - Zona 6 CAN., Bogotá, Colombia
3Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia. B. Santa Helena A.A. 546, Ibagué, Colombia
4Departamento de Biología Celular y Parasitología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjasot, Valencia, Spain

Received 13 May 2009; Revised 16 September 2009; Accepted 2 November 2009

Academic Editor: Ana M. Jansen

Copyright © 2009 Claudia Herrera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Special programme for research and training in tropical diseases (TDR),” Report of Scientific Group in Chagas Disease TDR/SWG/09, World Health Organization, Buenos Aires, Argentina, 2007. View at Google Scholar
  2. A. Moncayo and M. Ortiz, “An update on Chagas disease (human American trypanosomiasis),” Annals of Tropical Medicine and Parasitology, vol. 100, pp. 663–677, 2006. View at Google Scholar
  3. S. F. Brenière, R. Carrasco, S. Revollo, G. Aparicio, P. Desjeux, and M. Tibayrenc, “Chagas' disease in Bolivia: clinical and epidemiological features and zymodeme variability of Trypanosoma cruzi strains isolated from patients,” American Journal of Tropical Medicine and Hygiene, vol. 41, no. 5, pp. 521–529, 1989. View at Google Scholar · View at Scopus
  4. M. Tibayrenc, P. Ward, A. Moya, and F. J. Ayala, “Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 1, pp. 115–119, 1986. View at Google Scholar · View at Scopus
  5. M. Tibayrenc and F. J. Ayala, “The clonal theory of parasitic protozoa: 12 years on,” Trends in Parasitology, vol. 18, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. “Recommendations from a satellite meeting,” Memorias do Instituto Oswaldo Cruz, vol. 194, supplement 1, pp. 429–432, 1999.
  7. S. Brisse, J.-C. Dujardin, and M. Tibayrenc, “Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers,” Molecular and Biochemical Parasitology, vol. 111, no. 1, pp. 95–105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Yeo, N. Acosta, M. Llewellyn et al., “Origins of Chagas disease: didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids,” International Journal for Parasitology, vol. 35, no. 2, pp. 225–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. O. O'Connor, M.-F. Bosseno, C. Barnabé, E. J. P. Douzery, and S. F. Breniére, “Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing,” Infection, Genetics and Evolution, vol. 7, no. 5, pp. 587–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-F. Bosseno, C. Barnabé, E. Magallón et al., “Predominance of Trypanosoma cruzi lineage I in Mexico,” Journal of Clinical Microbiology, vol. 40, no. 2, pp. 627–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Añez, G. Crisante, F. M. da Silva et al., “Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas' disease,” Tropical Medicine and International Health, vol. 9, no. 12, pp. 1319–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Crisante, A. Rojas, M. M. G. Teixeira, and N. Añez, “Infected dogs as a risk factor in the transmission of human Trypanosoma cruzi infection in western Venezuela,” Acta Tropica, vol. 98, no. 3, pp. 247–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. O. E. Sousa, F. Samudio, C. Junca, and J. E. Calzada, “Molecular characterization of human Trypanosoma cruzi isolates from endemic areas in Panama,” Memorias do Instituto Oswaldo Cruz, vol. 101, no. 4, pp. 455–457, 2006. View at Google Scholar · View at Scopus
  14. P. Diosque, A. M. Padilla, R. O. Cimino et al., “Chagas disease in rural areas of Chaco Province, Argentina: epidemiologic survey in humans, reservoirs, and vectors,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 5, pp. 590–593, 2004. View at Google Scholar · View at Scopus
  15. A. Solari, A. Wallace, S. Ortiz, J. Venegas, and G. Sanchez, “Biological characterization of Trypanosoma cruzi stocks from Chilean insect vectors,” Experimental Parasitology, vol. 89, no. 3, pp. 312–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Herrera, M. D. Bargues, A. Fajardo et al., “Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia,” Infection, Genetics and Evolution, vol. 7, no. 4, pp. 535–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Thomas, S. J. Westenberger, D. A. Campbell, and N. R. Sturm, “Intragenomic spliced leader RNA array analysis of kinetoplastids reveals unexpected transcribed region diversity in Trypanosoma cruzi,” Gene, vol. 352, no. 1-2, pp. 100–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Falla, C. Herrera, A. Fajardo, M. Montilla, G. A. Vallejo, and F. Guhl, “Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans,” Acta Tropica, vol. 110, no. 1, pp. 15–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Fernandas, S. S. Santos, E. Cupolillo et al., “A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Tryopanosoma cruzi and T. rangeli in the Brazilian Amazon,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 1, pp. 97–99, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. F. G. Manrique, J. M. Ospina, G. M. Herrera et al., “Enfermedad de Chagas transplacentaria en Miraflores y Moniquirá, Boyacá,” Biomédica, vol. 27, supplement 1, p. 172, 2007. View at Google Scholar
  21. P. J. Pavía, M. Montilla, R. S. Nicholls, F. Manrique, G. Herrera, and C. J. Puerta, “Análisis de un caso de enfermedad de Chagas transplacentario en Moniquirá (Boyacá) mediante AP-PCR,” Biomédica, vol. 27, supplement 1, p. 238, 2007. View at Google Scholar
  22. R. P. Souto, O. Fernandes, A. M. Macedo, D. A. Campbell, and B. Zingales, “DNA markers define two major phylogenetic lineages of Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 83, no. 2, pp. 141–152, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Google Scholar · View at Scopus
  24. S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004. View at Google Scholar · View at Scopus
  25. R. Staden, D. P. Judge, and J. K. Bonfield, “Sequence assembly and finishing methods,” Methods of Biochemical Analysis, vol. 43, pp. 303–322, 2001. View at Google Scholar · View at Scopus
  26. D. L. Swofford, “PAUP phylogenetic analysis using parsimony (and other methods) Version 40b10,” Sunderland, Sinauer Associates, 2002.
  27. J. A. A. Nylander, MrModeltest v2.2., Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2004.
  28. D. Posada and K. A. Crandall, “Modeltest: testing the model of DNA substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998. View at Google Scholar · View at Scopus
  29. H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974. View at Google Scholar · View at Scopus
  30. D. Posada and T. R. Buckley, “Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests,” Systematic Biology, vol. 53, no. 5, pp. 793–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985. View at Google Scholar
  32. F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Fernandes, N. R. Sturm, R. Derré, and D. A. Campbell, “The mini-exon gene: a genetic marker for zymodeme III of Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 95, no. 1, pp. 129–133, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Fernandes, R. H. Mangia, C. V. Lisboa, A. P. Pinho, C. M. Morel, and B. Zingales, “The complexity of the sylvatic cycle of Trypanosoma cruzi in Rio de Janeiro state (Brazil) revealed by the non-transcribed spacer of the mini-exon gene,” Parasitology, vol. 118, no. 2, pp. 161–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Y. Kawashita, G. F. O. Sanson, O. Fernandes, B. Zingales, and M. R. S. Briones, “Maximum-likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios of Trypanosoma cruzi intraspecific evolution,” Molecular Biology and Evolution, vol. 18, no. 12, pp. 2250–2259, 2001. View at Google Scholar · View at Scopus
  36. WHO, “Second report from the Committee of Experts Series of technical reports,” Tech. Rep. 905, World Health Organization, Geneva, Switzerland, 2002. View at Google Scholar
  37. H. J. Carrasco, A. Torrellas, C. Garcıa, M. Segovia, and M. D. Feliciangeli, “Risk of Trypanosoma cruzi I (Kinetoplastida: Trypanosomatidae) transmission by Panstrongylus geniculatus (Hemiptera: Reduviidae) in Caracas (Metropolitan District) and neighboring States, Venezuela,” International Journal for Parasitology, vol. 35, no. 13, pp. 1379–1384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Noireau, P. Diosque, and A. M. Jansen, “Trypanosoma cruzi: adaptation to its vectors and its hosts,” Veterinary Research, vol. 40, no. 2, p. 26, 2009. View at Google Scholar · View at Scopus
  39. R. Devera, O. Fernandes, and J. R. Coura, “Should Trypanosoma cruzi be called “cruzi” complex? A review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection,” Memorias do Instituto Oswaldo Cruz, vol. 98, no. 1, pp. 1–12, 2003. View at Google Scholar · View at Scopus
  40. M. P. Deane, A. Jansen, and H. L. Lenzi, “Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis,” Memorias do Instituto Oswaldo Cruz, vol. 79, no. 4, pp. 513–515, 1984. View at Google Scholar · View at Scopus
  41. F. Guhl, C. Jaramillo, G. A. Vallejo, F. Cárdenas, and A. Aufderheide, “Chagas disease and human migration,” Memorias do Instituto Oswaldo Cruz, vol. 95, no. 4, pp. 553–555, 2000. View at Google Scholar · View at Scopus
  42. M. Gaunt and M. Miles, “The ecotopes and evolution of triatomine bugs (Triatominae) and their associated trypanosomes,” Memorias do Instituto Oswaldo Cruz, vol. 95, no. 4, pp. 557–565, 2000. View at Google Scholar · View at Scopus
  43. C. Barnabé, R. Yaeger, O. Pung, and M. Tibayrenc, “Trypanosoma cruzi: a considerable phylogenetic divergence indicates that the agent of chagas disease is indigenous to the native fauna of the United States,” Experimental Parasitology, vol. 99, no. 2, pp. 73–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Diosque, A. M. Padilla, R. O. Cimino et al., “Chagas disease in rural areas of Chaco Province, Argentina: epidemiologic survey in humans, reservoirs, and vectors,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 5, pp. 590–593, 2004. View at Google Scholar · View at Scopus
  45. A. M. Jansen, F. Madeira, J. C. Carreira, E. Medina-Acosta, and M. P. Deane, “Trypanosoma cruzi in the opossum Didelphis marsupialis: a study of the correlations and kinetics of the systemic and scent gland infections in naturally and experimentally infected animals,” Experimental Parasitology, vol. 86, no. 1, pp. 37–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Gurgel-Gonçalves, E. D. Ramalho, M. A. Duarte, and A. R. Palma, “Enzootic transmission of Trypanosoma cruzi and T. rangeli in the Federal District of Brazil,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 46, no. 6, pp. 323–330, 2004. View at Google Scholar · View at Scopus
  47. J. C. A. Carreira, A. M. Jansen, M. de Nazareth Meirelles, F. Costa e Silva, and H. L. Lenzi, “Trypanosoma cruzi in the scent glands of Didelphis marsupialis: the kinetics of colonization,” Experimental Parasitology, vol. 97, no. 3, pp. 129–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Fernandas, S. S. Santos, E. Cupolillo et al., “A mini-exon multiplex polymerase chain reaction to distinguish the major groups of Tryopanosoma cruzi and T. rangeli in the Brazilian Amazon,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 1, pp. 97–99, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Miles, M. D. Feliciangeli, and A. Rojas, “American trypanosomiasis (Chagas disease) and the role of molecular epidemiology in guiding control strategies,” BMJ, vol. 28, p. 144, 2003. View at Google Scholar
  50. S. Fitzpatrick, M. D. Feliciangeli, M. J. Sanchez-Martin, F. A. Monteiro, and M. A. Miles, “Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses,” PLoS Neglected Tropical Diseases, vol. 2, no. 4, article e210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. A. Vallejo, F. Guhl, J. C. Carranza, J. Moreno, O. Triana, and E. C. Grisard, “Parity between kinetoplast DNA and mini-exon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. pallescens and R. prolixus in Colombia,” Infection, Genetics and Evolution, vol. 3, no. 1, pp. 39–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Maia da Silva, A. C. Junqueira, M. Campaner et al., “Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors,” Molecular Ecology, vol. 16, no. 16, pp. 3361–3373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. D. A. Urrea, J. C. Carranza, C. A. C. Cuba et al., “Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R. colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors,” Infection, Genetics and Evolution, vol. 5, no. 2, pp. 123–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. G. A. Vallejo, F. Guhl, and G. A. Schaub, “Triatominae-Trypanosoma cruzi/T. rangeli: vector-parasite interactions,” Acta Tropica, vol. 110, no. 2-3, pp. 137–147, 2008. View at Publisher · View at Google Scholar