Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2011, Article ID 368692, 9 pages
http://dx.doi.org/10.1155/2011/368692
Research Article

In Vitro and In Vivo Antimalarial Activity Assays of Seeds from Balanites aegyptiaca: Compounds of the Extract Show Growth Inhibition and Activity against Plasmodial Aminopeptidase

1Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Justus Von Liebig Street 20, 53359 Rheinbach, Germany
2Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
3Institut für Ägyptologie und Altorientalistik, Johannes Gutenberg Universität Mainz, Johann-Friedrich-von-Pfeiffer-Weg 5, 55128 Mainz, Germany
4School of Pharmacy and Life Sciences, Robert Gordon University, St. Andrew Street, Aberdeen AB25 1HG, UK
5Fakultät für Angewandte Naturwissenschaften, University of Applied Sciences, Betzdorfer Str. 2, 50679 Cologne, Germany

Received 14 November 2010; Revised 25 January 2011; Accepted 20 March 2011

Academic Editor: Xin-zhuan Su

Copyright © 2011 Peter Kusch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Fletcher, “Traditional remedies—searching their natural sources for the next malaria drug,” TDR News, vol. 79, pp. 8–13, 2007. View at Google Scholar
  2. M. Ndoye, I. Y. Diallo, and K. Gassama-Dia, “Reproductive biology in Balanites aegyptiaca (L.) Del., a semi-arid forest tree,” African Journal of Biotechnology, vol. 3, no. 1, pp. 40–46, 2004. View at Google Scholar · View at Scopus
  3. A. M. Mohamed, W. Wolf, and W. E. L. Spiess, “Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels,” Plant Foods for Human Nutrition, vol. 57, no. 2, pp. 179–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. H. D. Neuwinger, “Plants used for poison fishing in tropical Africa,” Toxicon, vol. 44, no. 4, pp. 417–430, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. M. Maregesi, L. Pieters, O. D. Ngassapa et al., “Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities,” Journal of Ethnopharmacology, vol. 119, no. 1, pp. 58–66, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. Gnoula, V. Mégalizzi, N. De Nève et al., “Balanitin-6 and -7: diosgenyl saponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo,” International Journal of Oncology, vol. 32, no. 1, pp. 5–15, 2008. View at Google Scholar · View at Scopus
  7. S. L. Kela, R. A. Ogunsusi, V. C. Ogbogu, and N. Nwude, “Screening of some Nigerian plants for molluscicidal activity,” Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, vol. 42, no. 2, pp. 195–202, 1989. View at Google Scholar · View at Scopus
  8. W. S. Koko, H. S. Abdalla, M. Galal, and H. S. Khalid, “Evaluation of oral therapy on Mansonial Schistosomiasis using single dose of Balanites aegyptiaca fruits and praziquantel,” Fitoterapia, vol. 76, no. 1, pp. 30–34, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. B. P. Chapagain, V. Saharan, and Z. Wiesman, “Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito,” Bioresource Technology, vol. 99, no. 5, pp. 1165–1168, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. H. A. Al Ashaal, A. A. Farghaly, M. M. Abd El Aziz, and M. A. Ali, “Phytochemical investigation and medicinal evaluation of fixed oil of Balanites aegyptiaca fruits (Balantiaceae),” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 495–501, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. B. Moloney, A. R. Pawluk, and N. R. Ackland, “Plasmodium falciparum growth in deep culture,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 84, no. 4, pp. 516–518, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Trager and J. Williams, “Extracellular (axenic) development in vitro of the erythrocytic cycle of Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5351–5355, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kaiser, A. Gottwald, W. Maier, and H. M. Seitz, “Targeting enzymes involved in spermidine metabolism of parasitic protozoa—a possible new strategy for anti-parasitic treatment,” Parasitology Research, vol. 91, no. 6, pp. 508–516, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. Singh, S. K. Puri, S. K. Singh, R. Srivastava, R. C. Gupta, and V. C. Pandey, “Characterization of simian malarial parasite (Plasmodium knowlesi)-induced putrescine transport in rhesus monkey erythrocytes,” The Journal of Biological Chemistry, vol. 272, no. 21, pp. 13506–13511, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Teuscher, J. Lowther, T. S. Skinner-Adams et al., “The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum,” The Journal of Biological Chemistry, vol. 282, no. 42, pp. 30817–30826, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. Eskander M., Pharmacological and toxicological effects of Balanites aegyptiaca on laboratory animals, M.S. thesis, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan, 1982.
  17. A. El-Tahir, G. M. H. Satti, and S. A. Khalid, “Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Acacia nilotica,” Phytotherapy Research, vol. 13, no. 6, pp. 474–478, 1999. View at Google Scholar
  18. R. Hardman and E. A. Sofowora, “Biosynthesis of diosgenin in germinating seeds of Balanites aegyptiaca,” Planta Medica, vol. 20, no. 3, pp. 193–198, 1971. View at Google Scholar
  19. M. A. Yoon, T. S. Jeong, D. S. Park et al., “Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes,” Biological and Pharmaceutical Bulletin, vol. 29, no. 4, pp. 735–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. L. Mei, Y. B. Zeng, J. Liu, and H. F. Dai, “GC-MS analysis of volatile constituents from five different kinds of Chinese eaglewood,” Zhong Yao Cai, vol. 30, no. 5, pp. 551–555, 2007. View at Google Scholar · View at Scopus
  21. V. S. Rana and M. A. Blazquez, “Constituents of the essential oil of Meriandra bengalensis benth. Leaves from India,” Essential Oil Research, vol. 19, pp. 21–22, 2007. View at Google Scholar
  22. P. C. De, V. Bittrich, G. J. Shepherd, A. V. Lopes, and A. J. Marsaioli, “The ecological and taxonomic importance of flower volatiles of Clusia species (Guttiferae),” Phytochemistry, vol. 56, no. 5, pp. 443–452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. N. A. Malek, S. K. Shin, N. A. Wahab, and H. Yaacob, “Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves,” Molecules, vol. 14, no. 5, pp. 1713–1724, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. B. H. Ali, A. K. Bashir, and R. A. Rasheed, “Effect of the traditional medicinal plants Rhazya stricta, Balanitis aegyptiaca and Haplophylum tuberculatum on paracetamol-induced hepatotoxicity in mice,” Phytotherapy Research, vol. 15, no. 7, pp. 598–603, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus