Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2012 (2012), Article ID 362131, 8 pages
http://dx.doi.org/10.1155/2012/362131
Review Article

B-Cell Response during Protozoan Parasite Infections

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina

Received 31 August 2011; Accepted 6 October 2011

Academic Editor: Mauricio M. Rodrigues

Copyright © 2012 María C. Amezcua Vesely et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Magez, A. Schwegmann, R. Atkinson et al., “The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice,” PLoS Pathogens, vol. 4, no. 8, Article ID e1000122, 2008. View at Publisher · View at Google Scholar · View at PubMed
  2. T. von der Weid, N. Honarvar, and J. Langhorne, “Gene-targeted mice lacking B cells are unable to eliminate a blood stage malaria infection,” Journal of Immunology, vol. 156, no. 7, pp. 2510–2516, 1996. View at Google Scholar · View at Scopus
  3. S. Kumar and R. L. Tarleton, “The relative contribution of antibody production and CD8+ T cell function to immune control of Trypanosoma cruzi,” Parasite Immunology, vol. 20, no. 5, pp. 207–216, 1998. View at Google Scholar · View at Scopus
  4. F. E. Lund, “Cytokine-producing B lymphocytes-key regulators of immunity,” Current Opinion in Immunology, vol. 20, no. 3, pp. 332–338, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. D. Myers, “Role of B cell antigen processing and presentation in the humoral immune response,” FASEB Journal, vol. 5, no. 11, pp. 2547–2553, 1991. View at Google Scholar · View at Scopus
  6. G. J. Silverman and D. A. Carson, “Roles of B cells in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 5, no. 4, pp. S1–S6, 2003. View at Google Scholar · View at Scopus
  7. P. Youinou, “B cell conducts the lymphocyte orchestra,” Journal of Autoimmunity, vol. 28, no. 2-3, pp. 143–151, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. I. A. Abrahamsohn and W. D. Silva, “Antibody dependent cell-mediated cytotoxcity against Trypanosoma cruzi,” Parasitology, vol. 75, no. 3, pp. 317–323, 1977. View at Google Scholar · View at Scopus
  9. L. F. Umekita, H. A. Takehara, and I. Mota, “Role of the antibody Fc in the immune clearance of Trypanosoma cruzi,” Immunology Letters, vol. 17, no. 1, pp. 85–89, 1988. View at Google Scholar · View at Scopus
  10. D. A. Bermejo, M. C. Amezcua Vesely, M. Khan et al., “Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies,” Immunology, vol. 132, no. 1, pp. 123–133, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. Ronet, H. Voigt, H. Himmelrich et al., “Leishmania major-specific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in BALB/c mice,” Journal of Immunology, vol. 180, no. 7, pp. 4825–4835, 2008. View at Google Scholar · View at Scopus
  12. R. Carsetti, “The development of B cells in the bone marrow is controlled by the balance between cell-autonomous mechanisms and signals from the microenvironment,” Journal of Experimental Medicine, vol. 191, no. 1, pp. 5–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Qing, D. Jones, and T. A. Springer, “The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment,” Immunity, vol. 10, no. 4, pp. 463–471, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nagasawa, “Microenvironmental niches in the bone marrow required for B-cell development,” Nature Reviews Immunology, vol. 6, no. 2, pp. 107–116, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. B. Chung, M. Silverman, and J. G. Monroe, “Transitional B cells: step by step towards immune competence,” Trends in Immunology, vol. 24, no. 6, pp. 342–348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. T. T. Su, B. Guo, B. Wei, J. Braun, and D. J. Rawlings, “Signaling in transitional type 2 B cells is critical for peripheral B-cell development,” Immunological Reviews, vol. 197, pp. 161–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. A. Herzenberg, “B-1 cells: the lineage question revisited,” Immunological Reviews, vol. 175, pp. 9–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Montecino-Rodriguez, H. Leathers, and K. Dorshkind, “Identification of a B-1 B cell-specified progenitor,” Nature Immunology, vol. 7, no. 3, pp. 293–301, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. Zuniga, E. Acosta-Rodriguez, M. C. Merino, C. Montes, and A. Gruppi, “Depletion of immature B cells during Trypanosoma cruzi infection: involvement of myeloid cells and the cyclooxygenase pathway,” European Journal of Immunology, vol. 35, no. 6, pp. 1849–1858, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. Teixeira, A. Marques, C. S. Meireles et al., “Characterization of the B-cell immune response elicited in BALB/c mice challenged with Neospora caninum tachyzoites,” Immunology, vol. 116, no. 1, pp. 38–52, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. E. Clayton, M. E. Selkirk, and C. A. Corsini, “Murine trypanosomiasis: cellular proliferation and functional depletion in the blood, peritoneum, and spleen related to changes in bone marrow stem cells,” Infection and Immunity, vol. 28, no. 3, pp. 824–831, 1980. View at Google Scholar · View at Scopus
  22. N. Van Meirvenne, E. Magnus, and P. Büscher, “Evaluation of variant specific trypanolysis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense,” Acta Tropica, vol. 60, no. 3, pp. 189–199, 1996. View at Google Scholar · View at Scopus
  23. V. Bockstal, P. Guirnalda, G. Caljon et al., “T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis,” PLoS Pathogens, vol. 7, no. 6, Article ID e1002089, 2011. View at Publisher · View at Google Scholar · View at PubMed
  24. V. Bockstal, N. Geurts, and S. Magez, “Acute disruption of bone marrow B lymphopoiesis and apoptosis of transitional and marginal zone B cells in the spleen following a blood-stage plasmodium chabaudi infection in mice,” Journal of Parasitology Research, vol. 2011, Article ID 534697, 11 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. K. Hayakawa and R. R. Hardy, “Development and function of B-1 cells,” Current Opinion in Immunology, vol. 12, no. 3, pp. 346–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Baumgarth, J. W. Tung, and L. A. Herzenberg, “Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion,” Springer Seminars in Immunopathology, vol. 26, no. 4, pp. 347–362, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. Minoprio, A. Coutinho, S. Spinella, and M. Hontebeyrie-Joskowicz, “Xid immunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas' disease,” International Immunology, vol. 3, no. 5, pp. 427–433, 1991. View at Google Scholar · View at Scopus
  28. P. Minoprio, M. C. El Cheikh, E. Murphy et al., “Xid-associated resistance to experimental Chagas' disease is IFN-γ dependent,” Journal of Immunology, vol. 151, no. 8, pp. 4200–4208, 1993. View at Google Scholar · View at Scopus
  29. M. C. Merino, C. L. Montes, E. V. Acosta-Rodriguez, D. A. Bermejo, M. C. Amezcua-Vesely, and A. Gruppi, “Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1neg plasma cells which mainly provide non-parasite-specific antibodies,” International Immunology, vol. 22, no. 5, pp. 399–410, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. J. Jellusova, U. Wellmann, K. Amann, T. H. Winkler, and L. Nitschke, “CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity,” Journal of Immunology, vol. 184, no. 7, pp. 3618–3627, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. Z. Xu, E. J. Butfiloski, E. S. Sobel, and L. Morel, “Mechanisms of peritoneal B-1a cells accumulation induced by murine lupus susceptibility locus Sle2,” Journal of Immunology, vol. 173, no. 10, pp. 6050–6058, 2004. View at Google Scholar · View at Scopus
  32. T. Ito, S. Ishikawa, T. Sato et al., “Defective B1 cell homing to the peritoneal cavity and preferential recruitment of B1 cells in the target organs in a murine model for systemic lupus erythematosus,” Journal of Immunology, vol. 172, no. 6, pp. 3628–3634, 2004. View at Google Scholar · View at Scopus
  33. B. Reina-San-Martin, A. Cosson, and P. Minoprio, “Lymphocyte polyclonal activation: a pitfall for vaccine design against infectious agents,” Parasitology Today, vol. 16, no. 2, pp. 62–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. O'Garra, R. Chang, N. Go, R. Hastings, G. Haughton, and M. Howard, “Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10,” European Journal of Immunology, vol. 22, no. 3, pp. 711–717, 1992. View at Google Scholar · View at Scopus
  35. A. Hoerauf, W. Solbach, M. Lohoff, and M. Rollinghoff, “The Xid defect determines an improved clinical course of murine leishmaniasis in susceptible mice,” International Immunology, vol. 6, no. 8, pp. 1117–1124, 1994. View at Google Scholar · View at Scopus
  36. B. Babai, H. Louzir, P. A. Cazenave, and K. Dellagi, “Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice,” Clinical and Experimental Immunology, vol. 117, no. 1, pp. 123–129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Chen, F. Aosai, H. S. Mun, K. Norose, H. Hata, and A. Yano, “Anti-HSP70 autoantibody formation by B-1 cells in Toxoplasma gondii-infected mice,” Infection and Immunity, vol. 68, no. 9, pp. 4893–4899, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Chen, F. Aosai, K. Norose, H. S. Mun, and A. Yano, “The role of anti-HSP70 autoantibody-forming VH1-JH1 B-1 cells in Toxoplasma gondii-infected mice,” International Immunology, vol. 15, no. 1, pp. 39–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Martin, A. M. Oliver, and J. F. Kearney, “Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens,” Immunity, vol. 14, no. 5, pp. 617–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Radwanska, P. Guirnalda, C. De Trez, B. Ryffel, S. Black, and S. Magez, “Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000078, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. A. H. Achtman, M. Khan, I. C. M. MacLennan, and J. Langhorne, “Plasmodium chabaudi chabaudi infection in mice induces strong B cell responses and striking but temporary changes in splenic cell distribution,” Journal of Immunology, vol. 171, no. 1, pp. 317–324, 2003. View at Google Scholar · View at Scopus
  42. J. Jacob, R. Kassir, and G. Kelsoe, “In situ studies of the primary immune response to (4-hydroxy-3- nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations,” Journal of Experimental Medicine, vol. 173, no. 5, pp. 1165–1175, 1991. View at Google Scholar · View at Scopus
  43. A. L. Abreu-Silva, K. S. Calabrese, S. M. N. Cupolilo, F. O. Cardoso, C. S. F. Souza, and S. C. Gonçalves Da Costa, “Histopathological studies of visceralized Leishmania (Leishmania) amazonensis in mice experimentally infected,” Veterinary Parasitology, vol. 121, no. 3-4, pp. 179–187, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. C. Daniel-Ribeiro, J. de Oliveira-Ferreira, D. M. Banic, and B. Galvao-Castro, “Can malaria-associated polyclonal B-lymphocyte activation interfere with the development of anti-sporozoite specific immunity?” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 83, no. 3, pp. 289–292, 1989. View at Google Scholar · View at Scopus
  45. R. E. Sacco, M. Hagen, J. E. Donelson, and R. G. Lynch, “B lymphocytes of mice display an aberrant activation phenotype and are cell cycle arrested in G0/G(1A) during acute infection with Trypanosoma brucei,” Journal of Immunology, vol. 153, no. 4, pp. 1714–1723, 1994. View at Google Scholar · View at Scopus
  46. P. Minoprio, “Parasite polyclonal activators: new targets for vaccination approaches?” International Journal for Parasitology, vol. 31, no. 5-6, pp. 588–591, 2001. View at Google Scholar · View at Scopus
  47. W. I. Morrison, G. E. Roelants, K. S. Mayor-Withey, and M. Murray, “Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations,” Clinical and Experimental Immunology, vol. 32, no. 1, pp. 25–40, 1978. View at Google Scholar · View at Scopus
  48. M. A. Bryan, S. E. Guyach, and K. A. Norris, “Specific humoral immunity versus polyclonal B Cell activation in trypanosoma cruzi infection of susceptible and resistant mice,” PLoS Neglected Tropical Diseases, vol. 4, no. 7, article e733, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. E. Deak, A. Jayakumar, K. W. Cho et al., “Murine visceral leishmaniasis: IgM and polyclonal B-cell activation lead to disease exacerbation,” European Journal of Immunology, vol. 40, no. 5, pp. 1355–1368, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. V. Guiyedi, Y. Chanseaud, C. Fesel et al., “Self-reactivities to the non-erythroid alpha spectrin correlate with cerebral malaria in gabonese children,” PLoS One, vol. 2, no. 4, article e389, 2007. View at Publisher · View at Google Scholar · View at PubMed
  51. J. M. Peralta, P. Ginefra, J. C. Dias, J. M. Magalhaes, and A. Szarfman, “Autoantibodies and chronic Chagas's heart disease,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 75, no. 4, pp. 568–569, 1981. View at Google Scholar · View at Scopus
  52. A. Szarfman, A. Luquetti, and A. Rassi, “Tissue-reacting immunoglobulins in patients with different clinical forms of Chagas' disease,” The American Journal of Tropical Medicine and Hygiene, vol. 30, no. 1, pp. 43–46, 1981. View at Google Scholar · View at Scopus
  53. P. A. Moore, O. Belvedere, A. Orr et al., “BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator,” Science, vol. 285, no. 5425, pp. 260–263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Batten, J. Groom, T. G. Cachero et al., “BAFF mediates survival of peripheral immature B lymphocytes,” Journal of Experimental Medicine, vol. 192, no. 10, pp. 1453–1466, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. F. MacKay and P. Schneider, “Cracking the BAFF code,” Nature Reviews Immunology, vol. 9, no. 7, pp. 491–502, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. D. A. Bermejo, M. C. Amezcua-Vesely, C. L. Montes et al., “BAFF mediates splenic B cell response and antibody production in experimental chagas disease,” PLoS Neglected Tropical Diseases, vol. 4, no. 5, article e679, 2010. View at Publisher · View at Google Scholar · View at PubMed
  58. N. L. Bernasconi, E. Traggiai, and A. Lanzavecchia, “Maintenance of serological memory by polyclonal activation of human memory B cells,” Science, vol. 298, no. 5601, pp. 2199–2202, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. R. L. Tarleton, “Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi,” Journal of Immunology, vol. 144, no. 2, pp. 717–724, 1990. View at Google Scholar · View at Scopus
  60. R. L. Tarleton, B. H. Koller, A. Latour, and M. Postan, “Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection,” Nature, vol. 356, no. 6367, pp. 338–340, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. C. Kurts, B. W. Robinson, and P. A. Knolle, “Cross-priming in health and disease,” Nature Reviews Immunology, vol. 10, no. 6, pp. 403–414, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. D. F. Hoft, C. S. Eickhoff, O. K. Giddings, J. R. C. Vasconcelos, and M. M. Rodrigues, “Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming,” Journal of Immunology, vol. 179, no. 10, pp. 6889–6900, 2007. View at Google Scholar · View at Scopus
  63. F. Cardillo, E. Postol, J. Nihei, L. S. Aroeira, A. Nomizo, and J. Mengel, “B cells modulate T cells so as to favour T helper type 1 and CD8 + T-cell responses in the acute phase of Trypanosoma cruzi infection,” Immunology, vol. 122, no. 4, pp. 584–595, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. L. C. Menard, L. A. Minns, S. Darche et al., “B cells amplify IFN-γ production by T cells via a TNF-α-mediated mechanism,” Journal of Immunology, vol. 179, no. 7, pp. 4857–4866, 2007. View at Google Scholar · View at Scopus
  65. J. L. Hardison, R. A. Wrightsman, P. M. Carpenter, W. A. Kuziel, T. E. Lane, and J. E. Manning, “The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi,” Infection and Immunity, vol. 74, no. 1, pp. 135–143, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. F. S. Machado, N. S. Koyama, V. Carregaro et al., “CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi,” Journal of Infectious Diseases, vol. 191, no. 4, pp. 627–636, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. N. L. Sullivan, C. S. Eickhoff, X. Zhang, O. K. Giddings, T. E. Lane, and D. F. Hoft, “Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation,” Journal of Immunology, vol. 187, no. 3, pp. 1358–1368, 2011. View at Publisher · View at Google Scholar · View at PubMed
  68. G. T. Strickland and P. C. Sayles, “Depressed antibody responses to a thymus dependent antigen in toxoplasmosis,” Infection and Immunity, vol. 15, no. 1, pp. 184–190, 1977. View at Google Scholar · View at Scopus
  69. G. E. Weiss, P. D. Crompton, S. Li et al., “Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area,” Journal of Immunology, vol. 183, no. 3, pp. 2176–2182, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus