Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2012, Article ID 589295, 10 pages
http://dx.doi.org/10.1155/2012/589295
Review Article

Toxoplasma on the Brain: Understanding Host-Pathogen Interactions in Chronic CNS Infection

1Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
2Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA

Received 11 August 2011; Accepted 4 January 2012

Academic Editor: Sandra K. Halonen

Copyright © 2012 Sushrut Kamerkar and Paul H. Davis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Dubey, D. S. Lindsay, and C. A. Speer, “Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts,” Clinical Microbiology Reviews, vol. 11, no. 2, pp. 267–299, 1998. View at Google Scholar · View at Scopus
  2. J. P. Dubey, “Advances in the life cycle of Toxoplasma gondii,” International Journal for Parasitology, vol. 28, no. 7, pp. 1019–1024, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. M. W. Black and J. C. Boothroyd, “Lytic cycle of Toxoplasma gondii,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 607–623, 2000. View at Google Scholar · View at Scopus
  4. M. B. Lee, “Everyday and exotic foodborne parasites,” Canadian Journal of Infectious Diseases, vol. 11, no. 3, pp. 155–158, 2000. View at Google Scholar
  5. T. R. Slifko, H. V. Smith, and J. B. Rose, “Emerging parasite zoonoses associated with water and food,” International Journal for Parasitology, vol. 30, no. 12-13, pp. 1379–1393, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Dubey and J. L. Jones, “Toxoplasma gondii infection in humans and animals in the United States,” International Journal for Parasitology, vol. 38, no. 11, pp. 1257–1278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Tenter, A. R. Heckeroth, and L. M. Weiss, “Toxoplasma gondii: from animals to humans,” International Journal for Parasitology, vol. 30, no. 12-13, pp. 1217–1258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. P. Dubey, “Toxoplasmosis—a waterborne zoonosis,” Veterinary Parasitology, vol. 126, no. 1-2, pp. 57–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Dubey, “Toxoplasma gondii oocyst survival under defined temperatures,” Journal of Parasitology, vol. 84, no. 4, pp. 862–865, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Jones and J. P. Dubey, “Waterborne toxoplasmosis—recent developments,” Experimental Parasitology, vol. 124, no. 1, pp. 10–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Y. Wong and J. S. Remington, “Biology of Toxoplasma gondii,” AIDS, vol. 7, no. 3, pp. 299–316, 1993. View at Google Scholar · View at Scopus
  12. W. J. Sullivan Jr., A. T. Smith, and B. R. Joyce, “Understanding mechanisms and the role of differentiation in pathogenesis of Toxoplasma gondii—a review,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 155–161, 2009. View at Google Scholar · View at Scopus
  13. D. J. P. Ferguson, W. M. Hutchison, and E. Pettersen, “Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study,” Parasitology Research, vol. 75, no. 8, pp. 599–603, 1989. View at Google Scholar · View at Scopus
  14. J. P. Webster, “The effect of Toxoplasma gondii on animal behavior: playing cat and mouse,” Schizophrenia Bulletin, vol. 33, no. 3, pp. 752–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Fekadu, T. Shibre, and A. J. Cleare, “Toxoplasmosis as a cause for behaviour disorders—overview of evidence and mechanisms,” Folia Parasitologica, vol. 57, no. 2, pp. 105–113, 2010. View at Google Scholar · View at Scopus
  16. A. Barragan and L. David Sibley, “Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence,” Journal of Experimental Medicine, vol. 195, no. 12, pp. 1625–1633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. D. M. Foureau, D. W. Mielcarz, L. C. Menard et al., “TLR9-dependent induction of intestinal α-defensins by Toxoplasma gondii,” Journal of Immunology, vol. 184, no. 12, pp. 7022–7029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Munoz, O. Liesenfeld, and M. M. Heimesaat, “Immunology of Toxoplasma gondii,” Immunological Reviews, vol. 240, no. 1, pp. 269–285, 2011. View at Publisher · View at Google Scholar
  19. E. D. Tait and C. A. Hunter, “Advances in understanding immunity to Toxoplasma gondii,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 201–210, 2009. View at Google Scholar · View at Scopus
  20. A. M. Pollard, L. J. Knoll, and D. G. Mordue, “The role of specific Toxoplasma gondii molecules in manipulation of innate immunity,” Trends in Parasitology, vol. 25, no. 11, pp. 491–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. M. Da Gama, F. L. Ribeiro-Gomes, U. Guimarães Jr., and A. C.V. Arnholdt, “Reduction in adhesiveness to extracellular matrix components, modulation of adhesion molecules and in vivo migration of murine macrophages infected with Toxoplasma gondii,” Microbes and Infection, vol. 6, no. 14, pp. 1287–1296, 2004. View at Publisher · View at Google Scholar
  22. N. Courret, S. Darche, P. Sonigo, G. Milon, D. Buzoni-Gâtel, and I. Tardieux, “CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain,” Blood, vol. 107, no. 1, pp. 309–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Barragan and N. Hitziger, “Transepithelial migration by Toxoplasma,” Sub-Cellular Biochemistry, vol. 47, pp. 198–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Lambert and A. Barragan, “Modelling parasite dissemination: host cell subversion and immune evasion by Toxoplasma gondii,” Cellular Microbiology, vol. 12, no. 3, pp. 292–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. K. Lüder, M. Giraldo-Velásquez, M. Sendtner, and U. Gross, “Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation,” Experimental Parasitology, vol. 93, no. 1, pp. 23–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Lachenmaier, M. A. Deli, M. Meissner, and O. Liesenfeld, “Intracellular transport of Toxoplasma gondii through the blood-brain barrier,” Journal of Neuroimmunology, vol. 232, no. 1-2, pp. 119–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Skariah, M. K. McIntyre, and D. G. Mordue, “Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion,” Parasitology Research, vol. 107, no. 2, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. R. Radke, M. N. Guerini, M. Jerome, and M. W. White, “A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii,” Molecular and Biochemical Parasitology, vol. 131, no. 2, pp. 119–127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. D. F. Ferreira-da-Silva, A. C. Takács, H. S. Barbosa, U. Gross, and C. G. K. Lüder, “Primary skeletal muscle cells trigger spontaneous Toxoplasma gondii tachyzoite-to-bradyzoite conversion at higher rates than fibroblasts,” International Journal of Medical Microbiology, vol. 299, no. 5, pp. 381–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. F. Ferreira Da Silva, H. S. Barbosa, U. Groß, and C. G. K. Lüder, “Stress-related and spontaneous stage differentiation of Toxoplasma gondii,” Molecular BioSystems, vol. 4, no. 8, pp. 824–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. I. J. Blader and J. P. Saeij, “Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 117, no. 5-6, pp. 458–476, 2009. View at Publisher · View at Google Scholar
  32. M. Soete, D. Camus, and J. F. Dubrametz, “Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro,” Experimental Parasitology, vol. 78, no. 4, pp. 361–370, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Tobin, A. Pollard, and L. Knoll, “Toxoplasma gondii cyst wall formation in activated bone marrow-derived macrophages and bradyzoite conditions,” Journal of Visualized Experiments, no. 42, Article ID e2091, 2010. View at Google Scholar · View at Scopus
  34. L. M. Weiss, Y. F. Ma, P. M. Takvorian, H. B. Tanowitz, and M. Wittner, “Bradyzoite development in Toxoplasma gondii and the hsp70 stress response,” Infection and Immunity, vol. 66, no. 7, pp. 3295–3302, 1998. View at Google Scholar · View at Scopus
  35. W. Bohne, J. Heesemann, and U. Gross, “Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion,” Infection and Immunity, vol. 62, no. 5, pp. 1761–1767, 1994. View at Google Scholar · View at Scopus
  36. B. Nare, J. J. Allocco, P. A. Liberator, and R. G. K. Donald, “Evaluation of a cyclic GMP-dependent protein kinase inhibitor in treatment of murine toxoplasmosis: gamma interferon is required for efficacy,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 2, pp. 300–307, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. B. A. Fox, J. P. Gigley, and D. J. Bzik, “Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation,” International Journal for Parasitology, vol. 34, no. 3, pp. 323–331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Bohne and D. S. Roos, “Stage-specific expression of a selectable marker in Toxoplasma gondii permits selective inhibition of either tachyzoites or bradyzoites,” Molecular and Biochemical Parasitology, vol. 88, no. 1-2, pp. 115–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Radke, R. G. Donald, A. Eibs et al., “Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development,” PLoS Pathogens, vol. 2, no. 10, p. e105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. R. Radke, M. S. Behnke, A. J. Mackey, J. B. Radke, D. S. Roos, and M. W. White, “The transcriptome of Toxoplasma gondii,” BMC Biology, vol. 3, article 26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Bohne, M. Holpert, and U. Gross, “Stage differentiation of the protozoan parasite Toxoplasma gondii,” Immunobiology, vol. 201, no. 2, pp. 248–254, 1999. View at Google Scholar · View at Scopus
  42. U. Gross, W. Bohne, M. Soête, and J. F. Dubremetz, “Developmental differentiation between tachyzoites and bradyzoites of Toxoplasma gondii,” Parasitology Today, vol. 12, no. 1, pp. 30–33, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. J. P. J. Saeij, G. Arrizabalaga, and J. C. Boothroyd, “A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in Toxoplasma gondii persistence,” Infection and Immunity, vol. 76, no. 6, pp. 2402–2410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. K. Kim, A. Karasov, and J. C. Boothroyd, “Bradyzoite-specific surface antigen SRS9 plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of parasite replication in the intestine,” Infection and Immunity, vol. 75, no. 4, pp. 1626–1634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. W. Zhang, S. K. Halonen, Y. F. Ma, M. Wittner, and L. M. Weiss, “Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein,” Infection and Immunity, vol. 69, no. 1, pp. 501–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. W. J. Sullivan Jr., J. Narasimhan, M. M. Bhatti, and R. C. Wek, “Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control,” Biochemical Journal, vol. 380, no. 2, pp. 523–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Narasimhan, B. R. Joyce, A. Naguleswaran et al., “Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii,” Journal of Biological Chemistry, vol. 283, no. 24, pp. 16591–16601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Pszenny, P. H. Davis, X. W. Zhou, C. A. Hunter, V. B. Carruthers, and D. S. Roos, “Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice,” Infection and Immunity, vol. 80, no. 3, pp. 1156–1165, 2012. View at Google Scholar
  49. C. Aurrecoechea, J. Brestelli, B. P. Brunk et al., “EuPathDB: a portal to eukaryotic pathogen databases,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp941, pp. D415–D419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Gajria, A. Bahl, J. Brestelli et al., “ToxoDB: an integrated Toxoplasma gondii database resource,” Nucleic Acids Research, vol. 36, no. 1, pp. D553–D556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Bahl, P. H. Davis, M. Behnke et al., “A novel multifunctional oligonucleotide microarray for Toxoplasma gondii,” BMC Genomics, vol. 11, article 603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. V. B. Carruthers and Y. Suzuki, “Effects of Toxoplasma gondii infection on the brain,” Schizophrenia Bulletin, vol. 33, no. 3, pp. 745–751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Suzuki and J. S. Remington, “Toxoplasmic encephalitis in AIDS patients and experimental models for study of the disease and its treatment,” Research in Immunology, vol. 144, no. 1, pp. 66–67, 1993. View at Google Scholar · View at Scopus
  54. Y. Suzuki, “Host resistance in the brain against Toxoplasma gondii,” Journal of Infectious Diseases, vol. 185, supplement 1, pp. S58–S65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Suzuki and K. Joh, “Effect of the strain of Toxoplasma gondii on the development of Toxoplasmic encephalitis in mice treated with antibody to interferon-gamma,” Parasitology Research, vol. 80, no. 2, pp. 125–130, 1994. View at Google Scholar · View at Scopus
  56. J. P. J. Saeij, J. P. Boyle, M. E. Grigg, G. Arrizabalaga, and J. C. Boothroyd, “Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains,” Infection and Immunity, vol. 73, no. 2, pp. 695–702, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. S. E. Jamieson, H. Cordell, E. Petersen, R. McLeod, R. E. Gilbert, and J. M. Blackwell, “Host genetic and epigenetic factors in toxoplasmosis,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 162–169, 2009. View at Google Scholar · View at Scopus
  58. R. Pifer and F. Yarovinsky, “Innate responses to Toxoplasma gondii in mice and humans,” Trends in Parasitology, vol. 27, no. 9, pp. 388–393, 2011. View at Publisher · View at Google Scholar
  59. M. E. Sarciron and A. Gherardi, “Cytokines involved in Toxoplasmic encephalitis,” Scandinavian Journal of Immunology, vol. 52, no. 6, pp. 534–543, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. S. J. Parker, C. W. Roberts, and J. Alexander, “CD8+ T cells are the major lymphocyte subpopulation involved in the protective immune response to Toxoplasma gondii in mice,” Clinical and Experimental Immunology, vol. 84, no. 2, pp. 207–212, 1991. View at Google Scholar · View at Scopus
  61. K. A. Jordan and C. A. Hunter, “Regulation of CD8+ T cell responses to infection with parasitic protozoa,” Experimental Parasitology, vol. 126, no. 3, pp. 318–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. T. H. Harris, E. H. Wilson, E. D. Tait et al., “NF-κB1 contributes to T cell-mediated control of Toxoplasma gondii in the CNS,” Journal of Neuroimmunology, vol. 222, no. 1-2, pp. 19–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. F. LaRosa, J. S. Stumhofer, A. E. Gelman et al., “T cell expression of MyD88 is required for resistance to Toxoplasma gondii,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3855–3860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. N. Villegas, L. A. Lieberman, N. Mason et al., “A role for inducible costimulator protein in the CD28-independent mechanism of resistance to Toxoplasma gondii,” Journal of Immunology, vol. 169, no. 2, pp. 937–943, 2002. View at Google Scholar · View at Scopus
  65. E. H. Wilson, T. H. Harris, P. Mrass et al., “Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers,” Immunity, vol. 30, no. 2, pp. 300–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Wang, H. Kang, T. Kikuchi, and Y. Suzuki, “Gamma interferon production, but not perforin-mediated cytolytic activity, of T cells is required for prevention of Toxoplasmic encephalitis in BALB/c mice genetically resistant to the disease,” Infection and Immunity, vol. 72, no. 8, pp. 4432–4438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Wang, J. Claflin, H. Kang, and Y. Suzuki, “Importance of CD8+Vβ8+ T cells in IFN-γ-mediated prevention of Toxoplasmic encephalitis in genetically resistant BALB/c mice,” Journal of Interferon and Cytokine Research, vol. 25, no. 6, pp. 338–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Suzuki, J. Claflin, X. Wang, A. Lengi, and T. Kikuchi, “Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii,” International Journal for Parasitology, vol. 35, no. 1, pp. 83–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Dogruman-Al, I. Fidan, B. Celebi et al., “Cytokine profile in murine toxoplasmosis,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 1, pp. 16–19, 2011. View at Publisher · View at Google Scholar
  70. C. C. Ploix, S. Noor, J. Crane et al., “CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection,” Brain, Behavior, and Immunity, vol. 25, no. 5, pp. 883–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Flores, R. Saavedra, R. Bautista et al., “Macrophage migration inhibitory factor (MIF) is critical for the host resistance against Toxoplasma gondii,” The FASEB Journal, vol. 22, no. 10, pp. 3661–3671, 2008. View at Publisher · View at Google Scholar
  72. M. K. Middleton, A. M. Zukas, T. Rubinstein et al., “12/15-lipoxygenase-dependent myeloid production of interleukin-12 is essential for resistance to chronic toxoplasmosis,” Infection and Immunity, vol. 77, no. 12, pp. 5690–5700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. C. C. Chao, W. R. Anderson, S. Hu, G. Gekker, A. Martella, and P. K. Peterson, “Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism,” Clinical Immunology and Immunopathology, vol. 67, no. 2, pp. 178–183, 1993. View at Publisher · View at Google Scholar · View at Scopus
  74. P. K. Peterson, G. Gekker, S. Hu, and C. C. Chao, “Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism,” Journal of Infectious Diseases, vol. 171, no. 2, pp. 516–518, 1995. View at Google Scholar · View at Scopus
  75. S. K. Halonen, W. D. Lyman, and F. C. Chiu, “Growth and development of Toxoplasma gondii in human neurons and astrocytes,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 11, pp. 1150–1156, 1996. View at Google Scholar · View at Scopus
  76. D. J. P. Ferguson and W. M. Hutchison, “An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice,” Parasitology Research, vol. 73, no. 6, pp. 483–491, 1987. View at Publisher · View at Google Scholar · View at Scopus
  77. E. H. Wilson and C. A. Hunter, “The role of astrocytes in the immunopathogenesis of Toxoplasmic encephalitis,” International Journal for Parasitology, vol. 34, no. 5, pp. 543–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. R. M. Andrade, M. Wessendarp, M. J. Gubbels, B. Striepen, and C. S. Subauste, “CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2366–2377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. S. K. Halonen, “Role of autophagy in the host defense against Toxoplasma gondii in astrocytes,” Autophagy, vol. 5, no. 2, pp. 268–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Dellacasa-Lindberg, J. M. Fuks, R. B.G. Arrighi et al., “Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii,” Infection and Immunity, vol. 79, no. 8, pp. 3046–3052, 2011. View at Publisher · View at Google Scholar
  81. U. Wille, M. Nishi, L. Lieberman, E. H. Wilson, D. S. Roos, and C. A. Hunter, “IL-10 is not required to prevent immune hyperactivity during memory responses to Toxoplasma gondii,” Parasite Immunology, vol. 26, no. 5, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. S. Stumhofer, J. S. Silver, A. Laurence et al., “Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10,” Nature Immunology, vol. 8, no. 12, pp. 1363–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. S. Stumhofer, A. Laurence, E. H. Wilson et al., “Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system,” Nature Immunology, vol. 7, no. 9, pp. 937–945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Villarino, L. Hibbert, L. Lieberman et al., “The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection,” Immunity, vol. 19, no. 5, pp. 645–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Gardner and A. Ghorpade, “Tissue inhibitor of metalloproteinase (TIMP)-1: the TIMPed balance of matrix metalloproteinases in the central nervous system,” Journal of Neuroscience Research, vol. 74, no. 6, pp. 801–806, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. R. T. Clark, J. Philip Nance, S. Noor, and E. H. Wilson, “T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain,” ASN Neuro, vol. 3, no. 1, Article ID e00049, pp. 1–12, 2011. View at Publisher · View at Google Scholar
  87. E. Candelario-Jalil, Y. Yang, and G. A. Rosenberg, “Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia,” Neuroscience, vol. 158, no. 3, pp. 983–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. T. C. Melzer, H. J. Cranston, L. M. Weiss, and S. K. Halonen, “Host cell preference of Toxoplasma gondii cysts in murine brain: a confocal study,” Journal of Neuroparasitology, vol. 1, Article ID N100505, 2010. View at Google Scholar
  89. M. Schaeffer, S. J. Han, T. Chtanova et al., “Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii,” Journal of Immunology, vol. 182, no. 10, pp. 6379–6393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Gazzinelli, Y. Xu, S. Hieny, A. Cheever, and A. Sher, “Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii,” Journal of Immunology, vol. 149, no. 1, pp. 175–180, 1992. View at Google Scholar · View at Scopus
  91. D. M. Israelski and J. S. Remington, “Toxoplasmic encephalitis in patients with AIDS,” Infectious Disease Clinics of North America, vol. 2, no. 2, pp. 429–445, 1988. View at Google Scholar · View at Scopus
  92. P. A. Witting, “Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice,” Zeitschrift fur Parasitenkunde, vol. 61, no. 1, pp. 29–51, 1979. View at Google Scholar · View at Scopus
  93. M. Berdoy, J. P. Webster, and D. W. Mcdonald, “Fatal attraction in rats infected with Toxoplasma gondii,” Proceedings of the Royal Society B, vol. 267, no. 1452, pp. 1591–1594, 2000. View at Google Scholar · View at Scopus
  94. J. P. Webster, P. H. Lamberton, C. A. Donnelly, and E. F. Torrey, “Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii's ability to alter host behaviour,” Proceedings of The Royal Society B, vol. 273, no. 1589, pp. 1023–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Vyas, S. K. Kim, N. Giacomini, J. C. Boothroyd, and R. M. Sapolsky, “Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6442–6447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Flegr, “Effects of Toxoplasma on human behavior,” Schizophrenia Bulletin, vol. 33, no. 3, pp. 757–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. J. P. Webster, “The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus,” Parasitology, vol. 109, no. 5, pp. 583–589, 1994. View at Google Scholar · View at Scopus
  98. J. P. Webster, C. F. A. Brunton, and D. W. Macdonald, “Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus,” Parasitology, vol. 109, no. 1, pp. 37–43, 1994. View at Google Scholar · View at Scopus
  99. P. K. House, A. Vyas, and R. Sapolsky, “Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats,” PLoS ONE, vol. 6, no. 8, Article ID e23277, 2011. View at Publisher · View at Google Scholar
  100. M. Berdoy, J. P. Webster, and D. W. Macdonald, “Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific?” Parasitology, vol. 111, no. 4, pp. 403–409, 1995. View at Google Scholar · View at Scopus
  101. A. Vyas and R. Sapolsky, “Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain?” Folia Parasitologica, vol. 57, no. 2, pp. 88–94, 2010. View at Google Scholar · View at Scopus
  102. M. Gulinello, M. Acquarone, J. H. Kim et al., “Acquired infection with Toxoplasma gondii in adult mice results in sensorimotor deficits but normal cognitive behavior despite widespread brain pathology,” Microbes and Infection, vol. 12, no. 7, pp. 528–537, 2010. View at Publisher · View at Google Scholar
  103. I. M. Ethell and D. W. Ethell, “Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets,” Journal of Neuroscience Research, vol. 85, no. 13, pp. 2813–2823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. H. H. Stibbs, “Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice,” Annals of Tropical Medicine and Parasitology, vol. 79, no. 2, pp. 153–157, 1985. View at Google Scholar · View at Scopus
  105. L. Jones-Brando, E. F. Torrey, and R. Yolken, “Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii,” Schizophrenia Research, vol. 62, no. 3, pp. 237–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. K. Yereli, I. C. Balcioǧlu, and A. Özbilgin, “Is Toxoplasma gondii a potential risk for traffic accidents in Turkey?” Forensic Science International, vol. 163, no. 1-2, pp. 34–37, 2006. View at Publisher · View at Google Scholar
  107. H. Wang, R. H. Yolken, P. J. Hoekstra, H. Burger, and H. C. Klein, “Antibodies to infectious agents and the positive symptom dimension of subclinical psychosis: the TRAILS study,” Schizophrenia Research, vol. 129, no. 1, pp. 47–51, 2011. View at Publisher · View at Google Scholar
  108. R. H. Yolken, E. F. Torrey, J. A. Lieberman, S. Yang, and F. B. Dickerson, “Serological evidence of exposure to Herpes Simplex Virus type 1 is associated with cognitive deficits in the CATIE schizophrenia sample,” Schizophrenia Research, vol. 128, no. 1–3, pp. 61–65, 2011. View at Publisher · View at Google Scholar
  109. D. W. Niebuhr, A. M. Millikan, D. N. Cowan, R. Yolken, Y. Li, and N. S. Weber, “Selected infectious agents and risk of schizophrenia among U.S. military personnel,” American Journal of Psychiatry, vol. 165, no. 1, pp. 99–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. E. F. Torrey and R. H. Yolken, “Toxoplasma gondii and schizophrenia,” Emerging Infectious Diseases, vol. 9, no. 11, pp. 1375–1380, 2003. View at Google Scholar · View at Scopus
  111. B. U. Samuel, B. Hearn, D. Mack et al., “Delivery of antimicrobials into parasites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14281–14286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. W. A. Guiguemde, A. A. Shelat, D. Bouck et al., “Chemical genetics of Plasmodium falciparum,” Nature, vol. 465, no. 7296, pp. 311–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. F. L. Henriquez, S. Woods, H. Cong, R. McLeod, and C. W. Roberts, “Immunogenetics of Toxoplasma gondii informs vaccine design,” Trends in Parasitology, vol. 26, no. 11, pp. 550–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. J. F. Dubremetz and D. J. P. Ferguson, “The role played by electron microscopy in advancing our understanding of Toxoplasma gondii and other apicomplexans,” International Journal for Parasitology, vol. 39, no. 8, pp. 883–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Chtanova, M. Schaeffer, S. J. Han et al., “Dynamics of neutrophil migration in lymph nodes during infection,” Immunity, vol. 29, no. 3, pp. 487–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. I. Dellacasa-Lindberg, N. Hitziger, and A. Barragan, “Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging,” Microbes and Infection, vol. 9, no. 11, pp. 1291–1298, 2007. View at Publisher · View at Google Scholar
  117. N. Hitziger, I. Dellacasa, B. Albiger, and A. Barragan, “Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging,” Cellular Microbiology, vol. 7, no. 6, pp. 837–848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. B. John, T. H. Harris, E. D. Tait et al., “Dynamic imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii,” PLoS Pathogens, vol. 5, no. 7, Article ID e1000505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Chtanova, S. J. Han, M. Schaeffer et al., “Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node,” Immunity, vol. 31, no. 2, pp. 342–355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Chandramohanadas, P. H. Davis, D. P. Beiting et al., “Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells,” Science, vol. 324, no. 5928, pp. 794–797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Schlüter, M. Deckert, H. Hof, and K. Frei, “Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii,” Infection and Immunity, vol. 69, no. 12, pp. 7889–7893, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. C. A. W. Evans, M. S. Harbuz, T. Ostenfeld, A. Norrish, and J. M. Blackwell, “Nramp1 is expressed in neurons and is associated with behavioural and immune responses to stress,” Neurogenetics, vol. 3, no. 2, pp. 69–78, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Schlüter, N. Kaefer, H. Hof, O. D. Wiestler, and M. Deckert-Schlüter, “Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii-infected murine brain,” American Journal of Pathology, vol. 150, no. 3, pp. 1021–1035, 1997. View at Google Scholar · View at Scopus
  124. M. Deckert, J. D. Sedgwick, E. Fischer, and D. Schlüter, “Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction,” Acta Neuropathologica, vol. 111, no. 6, pp. 548–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. C. G. K. Lüder, C. Lang, M. Giraldo-Velasquez, M. Algner, J. Gerdes, and U. Gross, “Toxoplasma gondii inhibits MHC class II expression in neural antigen-presenting cells by down-regulating the class II transactivator CIITA,” Journal of Neuroimmunology, vol. 134, no. 1-2, pp. 12–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Schlúter, T. Meyer, A. Strack et al., “Regulation of microglia by CD4+ and CD8+ T cells: selective analysis in CD45-congenic normal and Toxoplasma gondii-infected bone marrow chimeras,” Brain Pathology, vol. 11, no. 1, pp. 44–55, 2001. View at Google Scholar
  127. M. Deckert-Schlüter, H. Bluethmann, N. Kaefer, A. Rang, and D. Schlüter, “Interferon-γ/receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis,” American Journal of Pathology, vol. 154, no. 5, pp. 1549–1561, 1999. View at Google Scholar · View at Scopus
  128. C. Oberdörfer, O. Adams, C. R. MacKenzie, C. J.A. De Groot, and W. Däubener, “Role of IDO activation in anti-microbial defense in human native astrocytes,” Advances in Experimental Medicine and Biology, vol. 527, pp. 15–26, 2003. View at Google Scholar
  129. S. K. Halonen and L. M. Weiss, “Investigation into the mechanism of gamma interferon-mediated inhibition of Toxoplasma gondii in murine astrocytes,” Infection and Immunity, vol. 68, no. 6, pp. 3426–3430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. S. K. Halonen, G. A. Taylor, and L. M. Weiss, “Gamma interferon-induced inhibition of Toxoplasma gondii in astrocytes is mediated by IGTP,” Infection and Immunity, vol. 69, no. 9, pp. 5573–5576, 2001. View at Publisher · View at Google Scholar · View at Scopus