Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2012 (2012), Article ID 625838, 8 pages
http://dx.doi.org/10.1155/2012/625838
Review Article

Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

1Instituto de Bioquímica Médica at Universidade Federal do Rio de Janeiro (UFRJ), 21940-590 Rio de Janeiro, RJ, Brazil
2Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT), 21940-902 Rio de janeiro, RJ, Brazil

Received 29 April 2011; Revised 29 July 2011; Accepted 12 September 2011

Academic Editor: Dario Zamboni

Copyright © 2012 Mário A. C. Silva-Neto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Dias, “Cecílio Romaña, Romaña's sign and Chagas' disease,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 30, no. 5, pp. 407–413, 1997. View at Google Scholar · View at Scopus
  2. Z. A. Andrade, “Pathogenesis of Chagas' disease,” Research in Immunology, vol. 142, no. 2, pp. 126–129, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Tarleton, “Chagas disease: a role for autoimmunity?” Trends in Parasitology, vol. 19, no. 10, pp. 447–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Golgher and R. T. Gazzinelli, “Innate and acquired immunity in the pathogenesis of Chagas disease,” Autoimmunity, vol. 37, no. 5, pp. 399–409, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. L. O. Andrade and N. W. Andrews, “Opinion: the Trypanosoma cruzi—host-cell interplay: location, invasion, retention,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 819–823, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. M. Jones, D. G. Colley, S. Tostes, E. R. Lopes, C. L. Vnencak-Jones, and T. L. McCurley, “Amplification of a Trypanosoma cruzi DNA sequence from inflammatory lesions in human chagasic cardiomyopathy,” American Journal of Tropical Medicine and Hygiene, vol. 48, no. 3, pp. 348–357, 1993. View at Google Scholar · View at Scopus
  7. L. A. Benvenuti, A. Roggério, H. F. G. Freitas, A. J. Mansur, A. Fiorelli, and M. L. Higuchi, “Chronic American trypanosomiasis: parasite persistence in endomyocardial biopsies is associated with high-grade myocarditis,” Annals of Tropical Medicine and Parasitology, vol. 102, no. 6, pp. 481–487, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. R. Vago, A. M. Macedo, R. P. Oliveira et al., “Kinetoplast DNA signatures of Trypanosoma cruzi strains obtained directly from infected tissues,” The American Journal of Pathology, vol. 149, no. 6, pp. 2153–2159, 1996. View at Google Scholar · View at Scopus
  9. W. O. Dutra and K. J. Gollob, “Current concepts in immunoregulation and pathology of human Chagas disease,” Current Opinion in Infectious Diseases, vol. 21, no. 3, pp. 287–292, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Rassi Jr., A. Rassi, and J. A. Marin-Neto, “Chagas disease,” The Lancet, vol. 375, no. 9723, pp. 1388–1402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Junqueira, B. Caetano, D. C. Bartholomeu et al., “The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease,” Expert Reviews in Molecular Medicine, vol. 12, article e29, 2010. View at Google Scholar
  12. O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Z. Brener and R. T. Gazzinelli, “Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease,” International Archives of Allergy and Immunology, vol. 114, no. 2, pp. 103–110, 1997. View at Google Scholar · View at Scopus
  14. M. A. J. Ferguson, “The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research,” Journal of Cell Science, vol. 112, no. 17, pp. 2799–2809, 1999. View at Google Scholar · View at Scopus
  15. M. A. J. Ferguson, M. G. Low, and G. A. M. Cross, “Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein,” The Journal of Biological Chemistry, vol. 260, no. 27, pp. 14547–14555, 1985. View at Google Scholar · View at Scopus
  16. I. C. Almeida, M. M. Camargo, D. O. Procópio et al., “Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents,” The EMBO Journal, vol. 19, no. 7, pp. 1476–1485, 2000. View at Google Scholar · View at Scopus
  17. I. C. Almeida and R. T. Gazzinelli, “Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses,” Journal of Leukocyte Biology, vol. 70, no. 4, pp. 467–477, 2001. View at Google Scholar · View at Scopus
  18. M. A. S. Campos, I. C. Almeida, O. Takeuchi et al., “Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite,” The Journal of Immunology, vol. 167, no. 1, pp. 416–423, 2001. View at Google Scholar · View at Scopus
  19. P. S. Coelho, A. Klein, A. Talvani et al., “Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi Trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-γ-primed-macrophages,” Journal of Leukocyte Biology, vol. 71, no. 5, pp. 837–844, 2002. View at Google Scholar · View at Scopus
  20. F. R. S. Gutierrez, T. W. P. Mineo, W. R. Pavanelli, P. M. M. Guedes, and J. S. Silva, “The effects of nitric oxide on the immune system during Trypanosoma cruzi infection,” Memórias do Instituto Oswaldo Cruz, vol. 104, no. 1, pp. 236–245, 2009. View at Google Scholar · View at Scopus
  21. J. C. S. Aliberti, F. S. Machado, J. T. Souto et al., “β-chemokines enhance parasite uptake and promote nitric oxide-dependent microbiostatic activity in murine inflammatory macrophages infected with Trypanosoma cruzi,” Infection and Immunity, vol. 67, no. 9, pp. 4819–4826, 1999. View at Google Scholar · View at Scopus
  22. L. K. M. Shoda, K. A. Kegerreis, C. E. Suarez et al., “DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide,” Infection and Immunity, vol. 69, no. 4, pp. 2162–2171, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. A. Campos, M. Closel, E. P. Valente et al., “Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid fifferentiation factor 88,” The Journal of Immunology, vol. 172, no. 3, pp. 1711–1718, 2004. View at Google Scholar · View at Scopus
  24. D. Martin and R. Tarleton, “Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection,” Immunological Reviews, vol. 201, pp. 304–317, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. C. Oliveira, J. R. Peixoto, L. B. de Arrada et al., “Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi,” The Journal of Immunology, vol. 173, no. 9, pp. 5688–5696, 2004. View at Google Scholar · View at Scopus
  26. M. M. Medeiros, J. R. Peixoto, A. C. Oliveira et al., “Toll-like receptor 4 (TLR4)-dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 488–496, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. Ropert and R. T. Gazzinelli, “Regulatory role of toll-like receptor 2 during infection with Trypanosoma cruzi,” Journal of Endotoxin Research, vol. 10, no. 6, pp. 425–430, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. R. T. Gazzinelli and E. Y. Denkers, “Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism,” Nature Reviews Immunology, vol. 6, no. 12, pp. 895–906, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” The Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006. View at Google Scholar · View at Scopus
  30. H. Hemmi, O. Takeuchi, T. Kawai et al., “A Toll-like receptor recognizes bacterial DNA,” Nature, vol. 408, no. 6813, pp. 740–745, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. D. Chessler, L. R. Ferreira, T. H. Chang, K. A. Fitzgerald, and B. A. Burleigh, “A novel IFN regulatory factor 3-dependent pathway activated by trypanosomes triggers IFN-beta in macrophages and fibroblasts,” The Journal of Immunology, vol. 181, no. 11, pp. 7917–7924, 2008. View at Google Scholar · View at Scopus
  32. A. D. C. Chessler, M. Unnikrishnan, A. K. Bei, J. P. Daily, and B. A. Burleigh, “Trypanosoma cruzi triggers an early type I IFN response in vivo at the site of intradermal infection,” The Journal of Immunology, vol. 182, no. 4, pp. 2288–2296, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. H. Kabarowski, “G2A and LPC: regulatory functions in immunity,” Prostaglandins and Other Lipid Mediators, vol. 89, no. 3-4, pp. 73–81, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. L. Wang, C. G. Radu, L. V. Yang, L. A. Bentolila, M. Riedinger, and O. N. Witte, “Lysophosphatidylcholine-induced surface redistribution regulates signaling of the murine G protein-coupled receptor G2A,” Molecular Biology of the Cell, vol. 16, no. 5, pp. 2234–2247, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. J. Wang, Y. Zhang, H. Wang et al., “Potential mechanisms for the enhancement of HERG K+ channel function by phospholipid metabolites,” British Journal of Pharmacology, vol. 141, no. 4, pp. 586–599, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. W. Drobnik, G. Liebisch, F. X. Audebert et al., “Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients,” The Journal of Lipid Research, vol. 44, no. 4, pp. 754–761, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. K. Kugiyama, S. A. Kerns, J. D. Morrisett, R. Roberts, and P. D. Henry, “Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins,” Nature, vol. 344, no. 6262, pp. 160–162, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. M. Golodne, R. Q. Monteiro, A. V. Graça-Souza, M. A. C. Silva-Neto, and G. C. Atella, “Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 278, no. 30, pp. 27766–27771, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. D. Mesquita, A. B. Carneiro, A. Bafica et al., “Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine,” Infection and Immunity, vol. 76, no. 12, pp. 5543–5552, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. G. Murugesan, M. R. S. Rani, C. E. Gerber et al., “Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 11, pp. 1375–1384, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Lauber, S. G. Blumenthal, M. Waibel, and S. Wesselborg, “Clearance of apoptotic cells: getting rid of the corpses,” Molecular Cell, vol. 14, no. 3, pp. 277–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. G. Radu, L. V. Yang, M. Riedinger, M. Au, and O. N. Witte, “T cell chemotaxis to lysophosphatidylcholine through the G2A receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 245–250, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. L. V. Yang, C. G. Radu, L. Wang, M. Riedinger, and O. N. Witte, “Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A,” Blood, vol. 105, no. 3, pp. 1127–1134, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. C. Connelly and F. Kierszenbaum, “Modulation of macrophage interaction with Trypanosoma cruzi by phospholipase A2-sensitive components of the parasite membrane,” Biochemical and Biophysical Research Communications, vol. 121, no. 3, pp. 931–939, 1984. View at Google Scholar · View at Scopus
  45. E. Y. Denkers and B. A. Butcher, “Sabotage and exploitation in macrophages parasitized by intracellular protozoans,” Trends in Parasitology, vol. 21, no. 1, pp. 35–41, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. H. Kollien and G. A. Schaub, “The development of Trypanosoma cruzi in triatominae,” Parasitology Today, vol. 16, no. 9, pp. 381–387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. J. H. S. Kabarowski, K. Zhu, L. Q. Le, O. N. Witte, and Y. Xu, “Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A,” Science, vol. 293, no. 5530, pp. 702–705, 2001. View at Google Scholar · View at Scopus
  48. K. Zhu, L. M. Baudhuin, G. Hong et al., “Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4,” The Journal of Biological Chemistry, vol. 276, no. 44, pp. 41325–41335, 2001. View at Google Scholar
  49. C. Peter, M. Waibel, C. G. Radu et al., “Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A,” The Journal of Biological Chemistry, vol. 283, no. 9, pp. 5296–5305, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. S. K. Jackson, W. Abate, J. Parton, S. Jones, and J. L. Harwood, “Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response,” Journal of Leukocyte Biology, vol. 84, no. 1, pp. 86–92, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. K. Lauber, E. Bohn, S. M. Kröber et al., “Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal,” Cell, vol. 113, no. 6, pp. 717–730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Kim, D. Gershov, X. Ma, N. Brot, and K. B. Elkon, “I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation,” The Journal of Experimental Medicine, vol. 196, no. 5, pp. 655–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. C. G. Freire-de-Lima, D. O. Nascimento, M. B. P. Soares et al., “Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages,” Nature, vol. 403, no. 6766, pp. 199–203, 2000, Erratum in: Nature, vol. 404, no. 6780, pp. 904, 2000. View at Google Scholar
  54. M. L. Belaunzarán, M. J. Wainszelbaum, E. M. Lammel et al., “Phospholipase A1 from Trypanosoma cruzi infective stages generates lipid messengers that activate host cell protein kinase c,” Parasitology, vol. 134, no. 4, pp. 491–502, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. K. Oishi, R. L. Raynor, P. A. Charp, and J. F. Kuo, “Regulation of protein kinase C by lysophospholipids: potential role in signal transduction,” The Journal of Biological Chemistry, vol. 263, no. 14, pp. 6865–6871, 1988. View at Google Scholar · View at Scopus
  56. M. Murakami, Y. Taketomi, C. Girard, K. Yamamoto, and G. Lambeau, “Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice,” Biochimie, vol. 92, no. 6, pp. 561–582, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. J. E. Burke and E. A. Dennis, “Phospholipase A2 structure/function, mechanism, and signaling,” The Journal of Lipid Research, vol. 50, pp. 237–242, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. K. Suckling, “Phospholipase A2s: developing drug targets for atherosclerosis,” Atherosclerosis, vol. 212, no. 2, pp. 357–366, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. B. B. Boyanovsky and N. R. Webb, “Biology of secretory phospholipase A2,” Cardiovascular Drugs and Therapy, vol. 23, no. 1, pp. 61–72, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. D. Stanley, “The non-venom insect phospholipases A2,” Biochimica et Biophysica Acta, vol. 1761, no. 11, pp. 1383–1390, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. L. Rana, W. Wyatt Hoback, N. A. A. Rahim, J. Bedick, and D. W. Stanley, “Pre-oral digestion: a phospholipase A2 associated with oral secretions in adult burying beetles, Nicrophorus marginatus,” Comparative Biochemistry and Physiology B, vol. 118, no. 2, pp. 375–380, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Tunaz and D. W. Stanley, “Phospholipase A2 in salivary glands isolated from tobacco hornworms, Manduca sexta,” Comparative Biochemistry and Physiology B, vol. 139, no. 1, pp. 27–33, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. A. S. Bowman, C. L. Gengler, M. R. Surdick et al., “A novel phospholipase A2 activity in saliva of the lone star tick, Amblyomma americanum (L.),” Experimental Parasitology, vol. 87, no. 2, pp. 121–132, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. K. Zhu, A. S. Bowman, J. W. Dillwith, and J. R. Sauer, “Phospholipase A2 Activity in Salivary Glands and Saliva of the Lone Star Tick (Acari: Ixodidae) during Tick Feeding,” Journal of Medical Entomology, vol. 35, no. 4, pp. 500–504, 1998. View at Google Scholar · View at Scopus
  65. Z. S. Derewenda and Y. S. Ho, “PAF-acetylhydrolases,” Biochimica et Biophysica Acta, vol. 1441, no. 2-3, pp. 229–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. T. Cheeseman, P. A. Bates, and J. M. Crampton, “Preliminary characterisation of esterase and platelet-activating factor (PAF)-acetylhydrolase activities from cat flea (Ctenocephalides felis) salivary glands,” Insect Biochemistry and Molecular Biology, vol. 31, no. 2, pp. 157–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. I. M. B. Francischetti, Z. Meng, B. J. Mans et al., “An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus,” Journal of Proteomics, vol. 71, no. 5, pp. 493–512, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. I. M. B. Francischetti, B. J. Mans, Z. Meng et al., “An insight into the sialome of the soft tick, Ornithodorus parkeri,” Insect Biochemistry and Molecular Biology, vol. 38, no. 1, pp. 1–21, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. B. J. Mans, J. F. Andersen, I. M. B. Francischetti et al., “Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior,” Insect Biochemistry and Molecular Biology, vol. 38, no. 1, pp. 42–58, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. I. M. B. Francischetti, V. M. Pham, B. J. Mans et al., “The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae),” Insect Biochemistry and Molecular Biology, vol. 35, no. 10, pp. 1142–1161, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. E. Calvo, A. Dao, V. M. Pham, and J. M. C. Ribeiro, “An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families,” Insect Biochemistry and Molecular Biology, vol. 37, no. 2, pp. 164–175, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. J. Hostomská, V. Volfová, J. Mu et al., “Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus,” BMC Genomics, vol. 10, article 282, 2009. View at Publisher · View at Google Scholar · View at PubMed
  73. J. Alves-Silva, J. M. C. Ribeiro, J. van den Abbeele et al., “An insight into the sialome of Glossina morsitans morsitans,” BMC Genomics, vol. 11, no. 1, article 213, 2010. View at Publisher · View at Google Scholar · View at PubMed
  74. N. Zeidner, A. Ullmann, C. Sackal et al., “A borreliacidal factor in Amblyomma americanum saliva is associated with phospholipase A2 activity,” Experimental Parasitology, vol. 121, no. 4, pp. 370–375, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. Vargas-Villarreal, A. Olvera-Rodríguez, B. D. Mata-Cárdenas, H. G. Martínez-Rodríguez, S. Said-Fernández, and A. Alagón-Cano, “Isolation of an Entamoeba histolytica intracellular alkaline phospholipase A2,” Parasitology Research, vol. 84, no. 4, pp. 310–314, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. L. F. D. Passero, M. D. Laurenti, T. Y. Tomokane, C. E. P. Corbett, and M. H. Toyama, “The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection,” Parasitology Research, vol. 102, no. 5, pp. 1025–1033, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. L. E. Bertello, M. J. M. Alves, W. Colli, and R. M. de Lederkremer, “Evidence for phospholipases from Trypanosoma cruzi active on phosphatidylinositol and inositolphosphoceramide,” Biochemical Journal, vol. 345, no. 1, pp. 77–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. R. M. Kini, “Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms,” Toxicon, vol. 45, no. 8, pp. 1147–1161, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. M. Rigoni, P. Caccin, S. Gschmeissner et al., “Neuroscience: equivalent effects of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures,” Science, vol. 310, no. 5754, pp. 1678–1680, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. L. Silva-Cardoso, P. Caccin, A. Magnabosco et al., “Paralytic activity of lysophosphatidylcholine from saliva of the waterbug Belostoma anurum,” Journal of Experimental Biology, vol. 213, no. 19, pp. 3305–3310, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. D. W. Stanley-Samuelson, E. Jensen, K. W. Nickerson, K. Tiebel, C. L. Ogg, and R. W. Howard, “Insect immune response to bacterial infection is mediated by eicosanoids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 3, pp. 1064–1068, 1991. View at Publisher · View at Google Scholar · View at Scopus
  82. D. W. Stanley-Samuelson and V. K. Pedibhotla, “What can we learn from prostaglandins and related eicosanoids in insects?” Insect Biochemistry and Molecular Biology, vol. 26, no. 3, pp. 223–234, 1996. View at Google Scholar · View at Scopus
  83. A. W. Ashton, S. Mukherjee, F. N. U. Nagajyothi et al., “Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection,” The Journal of Experimental Medicine, vol. 204, no. 4, pp. 929–940, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. L. A. M. Grillo, D. Majerowicz, and K. C. Gondim, “Lipid metabolism in Rhodnius prolixus (Hemiptera: reduviidae): role of a midgut triacylglycerol-lipase,” Insect Biochemistry and Molecular Biology, vol. 37, no. 6, pp. 579–588, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. R. L. Wilensky, Y. Shi, E. R. Mohler et al., “Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development,” Nature Medicine, vol. 14, no. 10, pp. 1059–1066, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus