Table of Contents Author Guidelines Submit a Manuscript
Journal of Parasitology Research
Volume 2013, Article ID 310605, 9 pages
http://dx.doi.org/10.1155/2013/310605
Research Article

Genetic Variation and Population Genetics of Taenia saginata in North and Northeast Thailand in relation to Taenia asiatica

Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Bangkok 10400, Thailand

Received 24 April 2013; Accepted 2 June 2013

Academic Editor: Wej Choochote

Copyright © 2013 Malinee Anantaphruti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Taenia saginata is the most common human Taenia in Thailand. By cox1 sequences, 73 isolates from four localities in north and northeast were differentiated into 14 haplotypes, 11 variation sites and haplotype diversity of 0.683. Among 14 haplotypes, haplotype A was the major (52.1%), followed by haplotype B (21.9%). Clustering diagram of Thai and GenBank sequences indicated mixed phylogeny among localities. By MJ analysis, haplotype clustering relationships showed paired-stars-like network, having two main cores surrounded by minor haplotypes. Tajima’s D values were significantly negative in T. saginata world population, suggesting population expansion. Significant Fu’s values in Thai, as well as world population, also indicate that population is expanding and may be hitchhiking as part of selective sweep. Haplotype B and its dispersion were only found in populations from Thailand. Haplotype B may evolve and ultimately become an ancestor of future populations in Thailand. Haplotype A seems to be dispersion haplotype, not just in Thailand, but worldwide. High genetic T. saginata intraspecies divergence was found, in contrast to its sister species, T. asiatica; among 30 samples from seven countries, its haplotype diversity was 0.067, while only 2 haplotypes were revealed. This extremely low intraspecific variation suggests that T. asiatica could be an endangered species.