Table of Contents Author Guidelines Submit a Manuscript
Journal of Probability and Statistics
Volume 2010 (2010), Article ID 823018, 26 pages
http://dx.doi.org/10.1155/2010/823018
Research Article

Forest Fire Risk Assessment: An Illustrative Example from Ontario, Canada

1Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, Ontario, ON, Canada N6A 5B7
2Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
3Faculty of Forestry, The University of Toronto, Toronto, ON, Canada M5S 3B3

Received 2 October 2009; Revised 6 March 2010; Accepted 27 April 2010

Academic Editor: Ricardas Zitikis

Copyright © 2010 W. John Braun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. McCaffrey, “Thinking of wildfire as a natural hazard,” Society and Natural Resources, vol. 17, no. 6, pp. 509–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. B. J. Stocks, J. A. Mason, J. B. Todd et al., “Large forest fires in Canada, 1959–1997,” Journal of Geophysical Research D, vol. 108, no. 1, pp. 5.1–5.12, 2003. View at Google Scholar · View at Scopus
  3. D. G. Woolford and W. J. Braun, “Convergent data sharpening for the identification and tracking of spatial temporal centers of lightning activity,” Environmetrics, vol. 18, no. 5, pp. 461–479, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. C. Tymstra, R. W. Bryce, B. M. Wotton, and O. B. Armitage, “Development and structure of Prometheus: the Canadian wildland fire growth simulation model,” Information Report NOR-X-417, Natural Resources Canada, Canadian Forestry Service, Northern Forestry Centre, Edmonton, Canada, 2009. View at Google Scholar
  5. M. A. Parisien, V. G. Kafka, K. G. Hirsch, J. B. Todd, S. G. Lavoie, and P. D. Maczek, “Using the Burn-P3 simulation model to map wildfire susceptibility,” Information Report NOR-X-405, Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Canada, 2005. View at Google Scholar
  6. D. R. Brillinger, H. K. Preisler, and J. W. Benoit, “Risk assessment: a forest fire example,” in Statistics and Science: A Festschrift for Terry Speed, D. R. Goldstein, Ed., vol. 40 of IMS Lecture Notes Monograph Series, pp. 177–196, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  7. Natural Resources Canada, “Canadian Forest Fire Danger Rating System,” NRC, August 2009, http://fire.nofc.cfs.nrcan.gc.ca/en/background/bi_FDR_summary_e.php.
  8. C. E. van Wagner, “Development and structure of the Canadian forest fire weather index system,” Forest Technical Report 35, Canadian Forest Service, Ottawa, Canada, 1987. View at Google Scholar
  9. B. M. Wotton, “Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications,” Environmental and Ecological Statistics, vol. 16, no. 2, pp. 107–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Forestry Canada Fire Danger Group, “Development and structure of the Canadian forest fire behavior prediction system,” Information Report ST-X-3, Forestry Canada, Science and Sustainable Development Directorate, Ottawa, Canada, 1992. View at Google Scholar
  11. FARSITE, 2008, http://www.firemodels.org/.
  12. J. J. Podur, Weather, forest vegetation, and fire suppression influences on area burned by forest fires in Ontario, Ph.D. dissertation, Graduate Department of Forestry, University of Toronto, Toronto, Canada, 2006.
  13. C. Tymstra, M. D. Flannigan, O. B. Armitage, and K. Logan, “Impact of climate change on area burned in Alberta's boreal forest,” International Journal of Wildland Fire, vol. 16, no. 2, pp. 153–160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Suffling, A. Grant, and R. Feick, “Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas,” Forest Ecology and Management, vol. 256, no. 11, pp. 1815–1824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Parisien, C. Miller, A. Ager, and M. Finney, “Use of artificial landscapes to isolate controls on burn probability,” Landscape Ecology, vol. 25, no. 1, pp. 79–93, 2010. View at Publisher · View at Google Scholar
  16. J. L. Beverly, E. P. K. Herd, and J. C. R. Conner, “Modeling fire susceptibility in west central Alberta, Canada,” Forest Ecology and Management, vol. 258, no. 7, pp. 1465–1478, 2009. View at Publisher · View at Google Scholar · View at Scopus