Table of Contents Author Guidelines Submit a Manuscript
Journal of Probability and Statistics
Volume 2012, Article ID 913560, 14 pages
http://dx.doi.org/10.1155/2012/913560
Research Article

Robust Semiparametric Optimal Testing Procedure for Multiple Normal Means

1Department of Statistics, Iowa State University, Ames, IA 50011, USA
2Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA

Received 27 March 2012; Accepted 10 May 2012

Academic Editor: Yongzhao Shao

Copyright © 2012 Peng Liu and Chong Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Lönnstedt and T. Speed, “Replicated microarray data,” Statistica Sinica, vol. 12, no. 1, pp. 31–46, 2002. View at Google Scholar
  2. G. K. Smyth, “Linear models and empirical Bayes methods for assessing differential expression in microarray experiments,” Statistical Applications in Genetics and Molecular Biology, vol. 3, article 3, 2004. View at Publisher · View at Google Scholar
  3. X. Cui, J. Hwang, J. Qiu, N. J. Blades, and A. Churchill, “Improved statistical tests for differential gene expression by shrinking variance components estimates,” Biostatistics, vol. 6, no. 1, pp. 59–75, 2005. View at Publisher · View at Google Scholar
  4. J. T. G. Hwang and P. Liu, “Optimal tests shrinking both means and variances applicable to microarray data analysis,” Statistical Applications in Genetics and Molecular Biology, vol. 9, article 36, 2010. View at Publisher · View at Google Scholar
  5. T. Cai, J. Jeng, and H. Li, “Robust detection and identification of sparse segments in ultra-high dimensional data analysis,” Journal of the Royal Statistical Society: Series B, vol. 14, part 4, 2012. View at Publisher · View at Google Scholar
  6. V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microarrays applied to the ionizing radiation response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5116–5121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher, “Empirical Bayes analysis of a microarray experiment,” The Journal of the American Statistical Association, vol. 96, no. 456, pp. 1151–1160, 2001. View at Publisher · View at Google Scholar
  8. P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes,” Bioinformatics, vol. 17, no. 6, pp. 509–519, 2001. View at Google Scholar · View at Scopus
  9. Y. C. Tai and T. P. Speed, “A multivariate empirical Bayes statistic for replicated microarray time course data,” The Annals of Statistics, vol. 34, no. 5, pp. 2387–2412, 2006. View at Publisher · View at Google Scholar
  10. G. W. Wright and R. M. Simon, “A random variance model for detection of differential gene expression in small microarray experiments,” Bioinformatics, vol. 19, no. 18, pp. 2448–2455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Tong and Y. Wang, “Optimal shrinkage estimation of variances with applications to microarray data analysis,” The Journal of the American Statistical Association, vol. 102, no. 477, pp. 113–122, 2007. View at Publisher · View at Google Scholar
  12. H. Bar, J. Booth, E. Schifano, and M. T. Wells, “Laplace approximated EM microarray analysis: an empirical Bayes approach for comparative microarray experiments,” Statistical Science, vol. 25, no. 3, pp. 388–407, 2010. View at Publisher · View at Google Scholar
  13. L. Wasserman, All of Nonparametric Statistics, Springer Texts in Statistics, Springer, New York, NY, USA, 2006.