Table of Contents
Journal of Powder Technology
Volume 2013, Article ID 937312, 11 pages
http://dx.doi.org/10.1155/2013/937312
Research Article

New Technology for Increasing Through-Life Reliability of Ceramics Components Using Self-Crack-Healing Ability

Department of Energy and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

Received 15 March 2013; Accepted 8 May 2013

Academic Editor: Fariborz Tavangarian

Copyright © 2013 Kotoji Ando et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Nakao, K. Takahashi, and K. Ando, “Self-healing of surface cracks in structural ceramics,” in Self-Healing Materials, S. K. Ghosh, Ed., chapter 6, pp. 183–217, Wiley-VCH, Weinheim, Germany, 2009. View at Google Scholar
  2. K. Ando, K. Takahashi, and W. Nakao, “Self-crack-healing behavior of structural ceramics,” in Handbook of Nanoceramics and Their Based Nanodevices, T. Y. Tseng and H. S. Nalwa, Eds., vol. 1, chapter 3, pp. 1–26, American Scientific Publishers, Valencia, Calif, USA, 2009. View at Google Scholar
  3. T. Osada, W. Nakao, K. Takahashi, K. Ando, and S. Saito, “Strength recovery behavior of machined alumina/SiC whisker composite by crack-healing,” Journal of the Ceramic Society of Japan, vol. 115, no. 1340, pp. 278–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Chu, S. Sato, Y. Kobayashi, and K. Ando, “Damage healing and strengthening behaviour in intelligent mullite/SiC ceramics,” Fatigue & Fracture of Engineering Materials & Structures, vol. 18, no. 9, pp. 1019–1029, 1995. View at Google Scholar · View at Scopus
  5. K. Takahashi, K. Ando, H. Murase, S. Nakayama, and S. Saito, “Threshold stress for crack-healing of Si3N4/SiC and resultant cyclic fatigue strength at the healing temperature,” Journal of the American Ceramic Society, vol. 88, no. 3, pp. 645–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Takahashi, Y. Nishio, Y. Kimura, and K. Ando, “Improvement of strength and reliability of ceramics by shot peening and crack healing,” Journal of the European Ceramic Society, vol. 30, no. 15, pp. 3047–3052, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Frey and W. Pfeiffer, “Shot peening of ceramics: damage or benefit?” in Shot Peening, L. Wgner, Ed., pp. 185–190, Wiley-VCH, Weinheim, Germany, 2003. View at Google Scholar
  8. W. Pfeiffer and T. Frey, “Strengthening of ceramics by shot peening,” Journal of the European Ceramic Society, vol. 26, no. 13, pp. 2639–2645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Ando, Y. Shirai, M. Nakatani, Y. Kobayashi, and S. Sato, “(Crack-healing + proof test): a new methodology to guarantee the structural integrity of a ceramics component,” Journal of the European Ceramic Society, vol. 22, no. 1, pp. 121–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Ando, B. S. Kim, M. C. Chu, S. Saito, and K. Takahashi, “Crack-healing and mechanical behaviour of Al2O3/SiC composites at elevated temperature,” Fatigue & Fracture of Engineering Materials & Structures, vol. 27, no. 7, pp. 533–541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Nakao, K. Takahashi, and K. Ando, “Threshold stress during crack-healing treatment of structural ceramics having the crack-healing ability,” Materials Letters, vol. 61, no. 13, pp. 2711–2713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. I. A. Chou, H. M. Chan, and M. P. Harmer, “Effect of annealing environment on the crack healing and mechanical behavior of silicon carbide-reinforced alumina nanocomposites,” Journal of the American Ceramic Society, vol. 81, no. 5, pp. 1203–1208, 1998. View at Google Scholar · View at Scopus
  13. K. Ando, T. Ikeda, S. Sato, F. Yao, and Y. Kobayasi, “A preliminary study on crack healing behaviour of Si3N4/SiC composite ceramics,” Fatigue & Fracture of Engineering Materials & Structures, vol. 21, no. 1, pp. 119–122, 1998. View at Google Scholar · View at Scopus
  14. Y. S. Jung, W. Nakao, K. Takahashi, K. Ando, and S. Saito, “Crack-healing behavior of Si3N4/SiC composite under low oxygen partial pressure,” Journal of the Society of Materials Science, Japan, vol. 57, no. 11, pp. 1132–1137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ando, K. Furusawa, K. Takahashi, M. C. Chu, and S. Sato, “Crack-healing behavior of structural ceramics under constant and cyclic stress at elevated temperature,” Journal of the Ceramic Society of Japan, vol. 110, no. 1284, pp. 741–747, 2002. View at Google Scholar · View at Scopus
  16. S. K. Lee, W. Ishida, S. Y. Lee, K. W. Nam, and K. Ando, “Crack-healing behavior and resultant strength properties of silicon carbide ceramic,” Journal of the European Ceramic Society, vol. 25, no. 5, pp. 569–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Lee, K. Ando, and Y. W. Kim, “Effect of heat treatments on the crack-healing and static fatigue behavior of silicon carbide sintered with Sc2O3 and AlN,” Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3478–3482, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Lee, M. Ono, W. Nakao, K. Takahashi, and K. Ando, “Crack-healing behaviour of mullite/SiC/Y2O3 composites and its application to the structural integrity of machined components,” Journal of the European Ceramic Society, vol. 25, no. 15, pp. 3495–3502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. S. Jung, Y. Guo, W. Nakao, K. Takahashi, K. Ando, and S. Saito, “Crack-healing behaviour and resultant high-temperature fatigue strength of machined Si3N4/SiC composite ceramic,” Fatigue & Fracture of Engineering Materials & Structures, vol. 31, no. 1, pp. 2–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Ando, K. Takahashi, S. Nakayama, and S. Saito, “Crack-healing behavior of Si3N4/SiC ceramics under cyclic stress and resultant fatigue strength at the healing temperature,” Journal of the American Ceramic Society, vol. 85, no. 9, pp. 2268–2272, 2002. View at Google Scholar · View at Scopus
  21. K. Ando, K. Furusawa, M. C. Chu, T. Hanagata, K. Tuji, and S. Sato, “Crack-healing behavior under stress of mullite silicon carbide ceramics and the resultant fatigue strength,” Journal of the American Ceramic Society, vol. 84, no. 9, pp. 2073–2078, 2001. View at Google Scholar · View at Scopus
  22. K. Takahashi, K. Uchiide, Y. Kimura, W. Nakao, K. Ando, and M. Yokouchi, “Threshold stress for crack healing of mullite reinforced by SiC whiskers and SiC particles and resultant fatigue strength at the healing temperature,” Journal of the American Ceramic Society, vol. 90, no. 7, pp. 2159–2164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Nakao, M. Ono, S. K. Lee, K. Takahashi, and K. Ando, “Critical crack-healing condition for SiC whisker reinforced alumina under stress,” Journal of the European Ceramic Society, vol. 25, no. 16, pp. 3649–3655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Takahashi, Y. S. Jung, Y. Nagoshi, and K. Ando, “Crack-healing behavior of Si3N4/SiC composite under stress and low oxygen pressure,” Materials Science and Engineering A, vol. 527, no. 15, pp. 3343–3348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Nakatani, S. Sato, Y. Kobayashi, and K. Ando, “A study on crack-healing + proof test to guarantee the structural integrity of ceramic coil springs,” Journal of High Pressure Institute of Japan, vol. 43, no. 2, pp. 85–91, 2005. View at Google Scholar
  26. M. Ono, W. Nakao, K. Takahashi, M. Nakatani, and K. Ando, “A new methodology to guarantee the structural integrity of Al2O3/SiC composite using crack healing and a proof test,” Fatigue & Fracture of Engineering Materials & Structures, vol. 30, no. 7, pp. 599–607, 2007. View at Publisher · View at Google Scholar · View at Scopus