Table of Contents
Journal of Powder Technology
Volume 2016 (2016), Article ID 4101089, 9 pages
http://dx.doi.org/10.1155/2016/4101089
Research Article

New Materials for SLS: The Use of Antistatic and Flow Agents

Institute of Polymer Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Am Weichselgarten 9, 91058 Erlangen, Germany

Received 15 March 2016; Revised 10 May 2016; Accepted 17 May 2016

Academic Editor: Wei Hsing Tuan

Copyright © 2016 Matthias Michael Lexow and Dietmar Drummer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Goodridge, M. L. Shofner, R. J. M. Hague et al., “Processing of a Polyamide-12/carbon nanofibre composite by laser sintering,” Polymer Testing, vol. 30, no. 1, pp. 94–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Wohlers and T. Caffrey, Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry, 2014.
  3. A. Wegner, Theorie über die Fortführung von Aufschmelzvorgängen als Grundvoraussetzung für eine robuste Prozessführung beim Laser-Sintern von Thermoplasten [M.S. thesis], University of Duisburg-Essen, Essen, Germany, 2015.
  4. VDI, Generative Fertigungsverfahren, Rapid-Technologien (Rapid Prototyping), VDI 3404, 2007.
  5. N. Hopkinson, R. J. M. Hague, and P. M. Dickens, Rapid Manufacturing—An Industrial Revolution for the Digital Age, John Wiley & Sons, Chichester, UK, 2006.
  6. M. Launhardt, M. Drexler, and D. Drummer, “Rapid-manufacturing-process for elastomeric components,” International Journal of Recent Contributions from Engineering, Science & IT, vol. 3, no. 2, pp. 1–6, 2015. View at Publisher · View at Google Scholar
  7. T. Wohlers, Wohlers Report 2009—Rapid Prototyping—State of the Industry, 2009.
  8. R. D. Goodridge, C. J. Tuck, and R. J. M. Hague, “Laser sintering of polyamides and other polymers,” Progress in Materials Science, vol. 57, no. 2, pp. 229–267, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Seul, Ansätze zur werkstoffoptimierung beim lasersintern durch charakterisierunng und modifizierung grenzflächenenergetischer phänomene [Ph.D. thesis], Technische Hoschule, Aachen, Germany, 2003.
  10. K. Wudy, D. Drummer, F. Kühnlein, and M. Drexler, “Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced parts,” in Proceedings of the pps-29: The 29th International Conference of the Polymer Processing Society—Conference Papers, vol. 1593 of AIP Conference Proceedings, pp. 691–695, Nuremberg, Germany, July 2013. View at Publisher · View at Google Scholar
  11. K. Wudy, D. Drummer, and M. Drexler, “Selective laser melting of polyamide 12: a holistic approach for modeling of the aging behaviour,” in Proceedings of the 5th International Conference on Additive Technologies (iCAT '14), Vienna, Austria, 2014.
  12. A. Mazzoli, G. Moriconi, and M. G. Pauri, “Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering,” Materials & Design, vol. 28, no. 3, pp. 993–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Negi, S. Dhiman, and R. K. Sharma, “Determining the effect of sintering conditions on mechanical properties of laser sintered glass filled polyamide parts using RSM,” Measurement, vol. 68, pp. 205–218, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. Athreya, K. Kalaitzidou, and S. Das, “Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering,” Materials Science and Engineering A, vol. 527, no. 10-11, pp. 2637–2642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Ajoku, N. Saleh, N. Hopkinson, R. Hague, and P. Erasenthiran, “Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts,” Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, vol. 220, no. 7, pp. 1077–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Laumer, K. Wudy, M. Drexler et al., “Fundamental investigation of laser beam melting of polymers for additive manufacture,” Journal of Laser Applications, vol. 26, no. 4, Article ID 042003, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zhao, D. Drummer, K. Wudy, and M. Drexler, “Untersuchung des schmelz- und sinterprozesses von polyamid 12 beim selektiven strahlschmelzen,” in Proceedings of the RapidTech, Erfurt, Germany, June 2015.
  18. M. Drexler, K. Wudy, and D. Drummer, “Einfluss des pulverauftragsprozesses auf den selektiven strahlschmelzprozess thermoplastischer kunststoffe,” in Proceedings of the Tagungsband/Digital Proceedings RapidTech, Erfurt, Germany, 2015.
  19. M. Drexler, M. Lexow, and D. Drummer, “Selective laser melting of polymer powder—part mechanics as function of exposure speed,” Physics Procedia, vol. 78, pp. 328–336, 2015. View at Publisher · View at Google Scholar
  20. K. Wudy, M. Drexler, and D. Drummer, “Selektives strahlschmelzen von polymer-blends: prozess-und werkstoffanforderungen,” in Proceedings of the Tagungsband/Digital Proceedings RapidTech, Erfurt, Germany, 2015.
  21. M. Schmid, Selektives Lasersintern (SLS) Mit Kunststoffen, Carl Hanser, München, Germany, 1st edition, 2015.
  22. D. Drummer, M. Drexler, and K. Wudy, “Density of laser molten polymer parts as function of powder coating process during additive manufacturing,” Procedia Engineering, vol. 102, pp. 1908–1917, 2015. View at Publisher · View at Google Scholar
  23. C. H. Clausen, D. J. Mickish, W. J. Nebe, and S. R. Vaidya, “Laser sinterable thermoplastic powder,” US Patent 6110411, 2000.
  24. H. Chung and S. Das, “Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering,” Materials Science and Engineering A, vol. 487, no. 1-2, pp. 251–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Ruppel, Vergleich unterschiedlicher Messmethoden zur Beurteilung der Potenz nanostrukturierter Fließregulierungsmittel [M.S. thesis], Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2007.
  26. G. Huber and K.-E. Wirth, “Electrostatically supported surface coating of solid particles in liquid nitrogen for use in Dry-Powder-Inhalers,” Powder Technology, vol. 134, no. 3, pp. 181–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Mullarney, L. E. Beach, R. N. Davé, B. A. Langdon, M. Polizzi, and D. O. Blackwood, “Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density,” Powder Technology, vol. 212, no. 3, pp. 397–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Edenbaum, Plastics Additives and Modifiers Handbook, Van Norstrand Reinhold, New York, NY, USA, 1992.
  29. H. Zweifel, R. Maier, and M. Schiller, Plastics Additives Handbook, Carl Hanser, München, Germany, 6th edition, 2009.
  30. J. C. Nelson, Selective laser sintering: a definition for the process and an empirical sintering model [Ph.D. dissertation], University of Texas at Austin, Austin, Tex, USA, 1993.
  31. L. Fiedler, L. O. Garcia Correa, H.-J. Radusch, A. Wutzler, and J. Gerken, “Evaluation of polypropylene powder grades in consideration of the laser sintering processability,” Journal of Plastics Technology, vol. 4, no. 3, p. 14, 2007. View at Google Scholar · View at Scopus
  32. Y. Shi, Z. Li, H. Sun, S. Huang, and F. Zeng, “Effect of the properties of the polymer materials on the quality of selective laser sintering parts,” Proceedings of the Institution of Mechanical Engineers, Part L, vol. 218, no. 3, pp. 247–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Blümel, Charakterisierung der Trockenen Beschichtung zur Herstellung von maßgeschneiderten Kompositpartikeln [M.S. thesis], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2015.
  34. A. Wegner and G. Witt, “Correlation of process parameters and part properties in laser sintering using response surface modeling,” Physics Procedia, vol. 39, pp. 480–489, 2012. View at Google Scholar
  35. R. D. Goodridge, R. J. M. Hague, and C. J. Tuck, “An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE),” Journal of Materials Processing Technology, vol. 210, no. 1, pp. 72–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. T. Pham, S. Dimov, and F. Lacan, “Selective laser sintering: applications and technological capabilities,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 213, no. 5, pp. 435–449, 1999. View at Google Scholar · View at Scopus
  37. J. Shen, J. Steinberger, J. Göpfert et al., “Inhomogeneous shrinkage of polymer materials in selective laser sintering,” in Proceedings of the Solid Freeform Fabrication (SFF '00), pp. 298–305, University of Texas, Austin, Tex, USA, 2000.
  38. C. Majewski, H. Zarringhalam, and N. Hopkinson, “Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 222, no. 9, pp. 1055–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Dupin, O. Lame, C. Barrès, and J.-Y. Charmeau, “Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering,” European Polymer Journal, vol. 48, no. 9, pp. 1611–1621, 2012. View at Publisher · View at Google Scholar · View at Scopus