Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2010, Article ID 901365, 14 pages
http://dx.doi.org/10.1155/2010/901365
Research Article

Dynamic Obstacle Avoidance for an Omnidirectional Mobile Robot

1Ohio University, Athens, OH 45701, USA
2Department of Mechanical Engineering, Ohio University, 259 Stocker Center, Athens, OH 45701-2979, USA

Received 22 December 2009; Revised 18 June 2010; Accepted 14 September 2010

Academic Editor: Suguru Arimoto

Copyright © 2010 Robert L. Williams II and Jianhua Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. G. Pin and S. M. Killough, “New family of omni-directional and holonomic wheeled platforms for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 480–489, 1994. View at Publisher · View at Google Scholar
  2. K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 22, no. 3-4, pp. 315–330, 1998. View at Google Scholar
  3. K. L. Moore and N. S. Flann, “Six-wheeled omni-directional autonomous mobile robot,” IEEE Control Systems Magazine, vol. 20, no. 6, pp. 53–66, 2000. View at Publisher · View at Google Scholar
  4. R. L. Williams II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285–293, 2002. View at Publisher · View at Google Scholar
  5. T. Kalmár-Nagy, R. D'Andrea, and P. Ganguly, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” Robotics and Autonomous Systems, vol. 46, no. 1, pp. 47–64, 2004. View at Publisher · View at Google Scholar
  6. J. R. Andrews and N. Hogan, “Impedance control as a framework for implementing obstacle avoidance in a manipulator,” in Control of Manufacturing Processes and Robotic Systems, D. E. Hardt and W. Book, Eds., pp. 243–251, ASME, Boston, Mass, USA, 1983. View at Google Scholar
  7. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings of International Conference Robotics and Automation, pp. 500–505, St. Louis, Mo, USA, March 1985.
  8. J. Borenstein and Y. Koren, “The vector field histogram—fast obstacle avoidance for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991. View at Publisher · View at Google Scholar
  9. S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 615–620, 2000. View at Publisher · View at Google Scholar
  10. M. D. Adams, “High speed target pursuit and asymptotic stability in mobile robotics,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp. 230–237, 1999. View at Publisher · View at Google Scholar
  11. J. Guldner and V. I. Utkin, “Sliding mode control for gradient tracking and robot navigation using artificial potential fields,” IEEE Transactions on Robotics and Automation, vol. 11, no. 2, pp. 247–254, 1995. View at Publisher · View at Google Scholar
  12. N. C. Tsourveloudis, K. P. Valavanis, and T. Hebert, “Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic,” IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 490–497, 2001. View at Publisher · View at Google Scholar
  13. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” International Journal of Robotics Research, vol. 17, no. 7, pp. 760–772, 1998. View at Google Scholar
  14. A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic environment: a collision cone approach,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 28, no. 5, pp. 562–574, 1998. View at Google Scholar
  15. A. Tsoularis and C. Kambhampati, “On-line planning for collision avoidance on the nominal path,” Journal of Intelligent and Robotic Systems, vol. 21, no. 4, pp. 327–371, 1998. View at Google Scholar
  16. K. Fujimura and H. Samet, “Hierarchical strategy for path planning among moving obstacles,” IEEE Transactions on Robotics and Automation, vol. 5, no. 1, pp. 61–69, 1989. View at Publisher · View at Google Scholar
  17. R. A. Conn and M. Kam, “Robot motion planning on N-dimensional star worlds among moving obstacles,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2, pp. 320–325, 1998. View at Google Scholar
  18. T. Y. Chang, S. W. Kuo, and Y. J. Hus, “A two-phase navigation system for mobile robots in dynamic environment,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '94), Munich, Germany, 1994.
  19. F. Xu, H. van Brussel, M. Nuttin, and R. Moreas, “Concepts for dynamic obstacle avoidance and their extended application in underground navigation,” Robotics and Autonomous Systems, vol. 42, no. 1, pp. 1–15, 2003. View at Publisher · View at Google Scholar
  20. C. Leng, Q. Cao, and Y. Huang, “A motion planning method for omni-directional mobile robot based on the anisotropic characteristics,” International Journal of Advanced Robotic Systems, vol. 5, no. 4, pp. 327–340, 2008. View at Google Scholar
  21. F. Belkhouche, “Reactive path planning in a dynamic environment,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 902–911, 2009. View at Publisher · View at Google Scholar
  22. J. van den Berg and M. Overmars, “Kinodynamic motion planning on roadmaps in dynamic environments,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '07), pp. 4253–4258, San Diego, Calif, USA, November 2007. View at Publisher · View at Google Scholar
  23. J. Wu, Dynamic path planning of an omni-directional robot in a dynamic environment, Ph.D. dissertation, Ohio University, Athens, Ohio, USA, 2004.
  24. J. J. Craig, Introduction to Robotics: Mechanics and Control, Pearson Prentice-Hall, Upper Saddle River, NJ, USA, 3rd edition, 2005.
  25. J. Wu, R. L. Williams II, and J. Lew, “Velocity and acceleration cones for kinematic and dynamic constraints on omni-directional mobile robots,” Transactions of the ASME on Dynamic Systems, Measurement and Control, vol. 128, no. 4, pp. 788–799, 2006. View at Publisher · View at Google Scholar