Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2011, Article ID 284352, 8 pages
http://dx.doi.org/10.1155/2011/284352
Research Article

Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

Florida Institute for Human and Machine Cognition, 40 South Alcaniz Street, Pensacola, FL 32502, USA

Received 2 June 2011; Revised 10 September 2011; Accepted 15 October 2011

Academic Editor: Tetsuya Mouri

Copyright © 2011 Anil K. Raj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Berkowitz, P. O'Leary, D. Kruse, and C. Harvey, Spinal Cord Injury: An Analysis of Medical and Social Costs, Demos Medical Publishing, New York, NY, USA, 1998.
  2. S. Goemaere, M. Van Laere, P. De Neve, and J. M. Kaufman, “Bone mineral status in paraplegic patients who do or do not perform standing,” Osteoporosis International, vol. 4, no. 3, pp. 138–143, 1994. View at Publisher · View at Google Scholar
  3. T. Sumiya, K. Kawamura, A. Tokuhiro, H. Takechi, and H. Ogata, “A survey of wheelchair use by paraplegic individuals in Japan. Part 2: prevalence of pressure sores,” Spinal Cord, vol. 35, no. 9, pp. 595–598, 1997. View at Google Scholar · View at Scopus
  4. R. L. Ruff, S. S. Ruff, and X. Wang, “Persistent benefits of rehabilitation on pain and life quality for nonambulatory patients with spinal epidural metastasis,” Journal of Rehabilitation Research and Development, vol. 44, no. 2, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hayashi, H. Kawamoto, and Y. Sankai, “Control method of robot suit HAL working as operator's muscle using biological and dynamical information,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '05), pp. 3063–3068, August 2005. View at Publisher · View at Google Scholar
  6. A. Tsukahara, Y. Hasegawa, and Y. Sankai, “Standing-up motion support for paraplegic patient with robot suit HAL,” in IEEE International Conference on Rehabilitation Robotics (ICORR '09), pp. 211–217, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kagawa and Y. Uno, “A human interface for stride control on a wearable robot,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), pp. 4067–4072, St. Louis, Mo, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kagawa and Y. Uno, “Gait pattern generation for a power-assist device of paraplegic gait,” in Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, pp. 633–638, Toyama, Japan, September 2009. View at Publisher · View at Google Scholar
  9. K. Kong and D. Jeon, “Design and control of an exoskeleton for the elderly and patients,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4, pp. 428–432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zabaleta, M. Bureau, G. Eizmendi, E. Olaiz, J. Medina, and M. Perez, “Exoskeleton design for functional rehabilitation in patients with neurological disorders and stroke,” in the 10th IEEE International Conference on Rehabilitation Robotics (ICORR '07), pp. 112–118, Noordwijk, The Netherlands, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Feng, J. Qian, Y. Zhang, L. Shen, Z. Zhang, and Q. Wang, “Biomechanical design of the powered gait orthosis,” in IEEE International Conference on Robotics and Biomimetics (ROBIO '07), pp. 1698–1702, Sanya, China, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Ekkelenkamp, J. Veneman, and H. Van Der Kooij, “LOPES: selective control of gait functions during the gait rehabilitation of CVA patients,” in the 9th IEEE International Conference on Rehabilitation Robotics (ICORR '05), pp. 361–364, Chicago, Ill, USA, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Colombo, M. Joerg, R. Schreier, and V. Dietz, “Treadmill training of paraplegic patients using a robotic orthosis,” Journal of Rehabilitation Research and Development, vol. 37, no. 6, pp. 693–700, 2000. View at Google Scholar · View at Scopus
  14. G. Colombo, M. Jörg, and V. Dietz, “Driven gait orthosis to do locomotor training of paraplegic patients,” in the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3159–3163, Chicago, Ill, USA, July 2000.
  15. R. Riener, L. Lünenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, “Patient-cooperative strategies for robot-aided treadmill training: first experimental results,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3, pp. 380–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Duschau-Wicke, A. Caprez, and R. Riener, “Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training,” Journal of Neuroengineering and Rehabilitation, vol. 7, no. 1, article no. 43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Bach-y-Rita, Brain Mechanisms in Sensory Substitution, Academic Press, New York, NY, USA, 1972.
  18. L. H. Finkel, “A model of receptive field plasticity and topographic map reorganization in the somatosensory cortex,” in Connectionist Modeling and Brain Function: The Developing Interface, S. J. Hanson and C. R. Olsen, Eds., pp. 164–192, MIT Press, Cambridge, Mass, USA, 1990. View at Google Scholar
  19. E. C. Walcott and R. B. Langdon, “Short-term plasticity of extrinsic excitatory inputs to neocortical layer 1,” Experimental Brain Research, vol. 136, no. 1, pp. 143–151, 2001. View at Google Scholar · View at Scopus
  20. P. Bach-y-Rita, “Theoretical aspects of sensory substitution and of neurotransmission-related reorganization in spinal cord injury,” Spinal Cord, vol. 37, no. 7, pp. 465–474, 1999. View at Google Scholar · View at Scopus
  21. J. Kawamura, O. Sweda, H. Kazutaka, N. Kazuyoshi, and S. Isobe, “Sensory feedback systems for the lower-limb prosthesis,” Journal of the Osaka Rosai Hospital, vol. 5, pp. 102–109, 1981. View at Google Scholar
  22. D. Zambarbieri et al., “Biofeedback techniques for rehabilitation of the lower limb amputee subjects,” in Proceedings of the 8th Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON ’98), Lemesos, Cyprus, June 1998.
  23. F. W. Clippinger, A. V. Seaber, and J. H. McElhaney, “Afferent sensory feedback for lower extremity prosthesis,” Clinical Orthopaedics and Related Research, vol. 169, pp. 202–208, 1982. View at Google Scholar
  24. J. A. Sabolich and G. M. Ortega, “Sense of feel for lower-limb amputees: a phase-one study,” Journal of Prosthetics & Orthotics, vol. 6, pp. 36–41, 1994. View at Google Scholar
  25. P. Bach-y-Rita, K. A. Kaczmarek, M. E. Tyler, and J. Garcia-Lara, “Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note,” Journal of Rehabilitation Research and Development, vol. 35, no. 4, pp. 427–430, 1998. View at Google Scholar · View at Scopus
  26. P. Bach-Y-Rita, C. C. Collins, F. A. Saunders, B. White, and L. Scadden, “Vision substitution by tactile image projection,” Nature, vol. 221, no. 5184, pp. 963–964, 1969. View at Publisher · View at Google Scholar · View at Scopus
  27. H. K. Kwa, J. H. Noorden, M. Missel, T. Craig, J. E. Pratt, and P. D. Neuhaus, “Development of the IHMC mobility assist exoskeleton,” in IEEE International Conference on Robotics and Automation (ICRA '09), pp. 2556–2562, Kobe, Japan, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. A. Winter, Biomechanics and motor control of human movement, Wiley, New York, NY, USA, 2nd edition, 1990.
  29. F. M. Maynard Jr., M. B. Bracken, G. Creasey et al., “International standards for neurological and functional classification of spinal cord injury,” Spinal Cord, vol. 35, no. 5, pp. 266–274, 1997. View at Google Scholar
  30. B. Morganti, G. Scivoletto, P. Ditunno, J. F. Ditunno, and M. Molinari, “Walking index for spinal cord injury (WISCI): criterion validation,” Spinal Cord, vol. 43, no. 1, pp. 27–33, 2005. View at Publisher · View at Google Scholar
  31. P. D. Neuhaus et al., “Design and evaluation of Mina, a robotic orthosis for paraplegics,” in Proceedings of the International Conference on Rehabilitation Robotics, Zurich, Switzerland, 2011.
  32. P. Bach-y-Rita, S. Wood, R. Leder et al., “Computer-assisted motivating rehabilitation (CAMR) for institutional, home, and educational late stroke programs,” Topics in Stroke Rehabilitation, vol. 8, no. 4, pp. 1–10, 2002. View at Google Scholar · View at Scopus