Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2011 (2011), Article ID 650415, 7 pages
http://dx.doi.org/10.1155/2011/650415
Research Article

Mechanical Performance of Actuators in an Active Orthosis for the Upper Extremities

Institute for Applied Computer Science, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany

Received 31 May 2011; Revised 25 August 2011; Accepted 30 September 2011

Academic Editor: Tetsuya Mouri

Copyright © 2011 Roland Wiegand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Curt, M. E. Schwab, and V. Dietz, “Providing the clinical basis for new interventional therapies: refined diagnosis and assessment of recovery after spinal cord injury,” Spinal Cord, vol. 42, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Gupta and M. K. O'Malley, “Design of a haptic arm exoskeleton for training and rehabilitation,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 3, pp. 280–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Sanchez Jr., E. Wolbrecht, R. Smith et al., “A pneumatic robot for re-training arm movement after stroke: rationale and mechanical design,” Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics (ICORR '05), pp. 500–504, 2005. View at Publisher · View at Google Scholar
  4. T. J. Engen, “Recent advances in upper-extremity orthotics,” in The Advance in Orthotics, Edward Arnold, 1976. View at Google Scholar
  5. S. Balasubramanian, W. Ruihua, and M. Perez, “Rupert: an exoskeleton robot for assisting rehabilitation of arm functions,” in Proceedings of Virtual Rehabilitation, pp. 163–167, 2008. View at Google Scholar
  6. K. Kadota, M. Akai, K. Kawashima, and T. Kagawa, “Development of power-assist robot arm using pneumatic rubbermuscles with a balloon sensor,” in Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '09), pp. 546–551, 2009.
  7. J. Klein, S. J. Spencer, J. Allington et al., “Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES),” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob '08), pp. 535–541, 2008. View at Publisher · View at Google Scholar
  8. I. Vanderniepen, R. Van Ham, M. Van Damme, R. Versluys, and D. Lefeber, “Orthopaedic rehabilitation: a powered elbow orthosis using compliant actuation,” Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '09), pp. 172–177, 2009. View at Publisher · View at Google Scholar
  9. S. Schulz, C. Pylatiuk, A. Kargov et al., “Design of a hybrid powered upper limb orthosis,” in Proceedings of the World Congress on Medical Physics and Biomedical Engineering: Neuroengineering, Neural Systems, Rehabilitation and Prosthetics, pp. 468–471, September 2009. View at Publisher · View at Google Scholar
  10. R. Rupp, U. Eck, O. Schill, M. Reischl, and S. Schulz, “Orthojacket an active fes-hybrid orthosis for the paralyzed upper extremity,” in Proceedings of the Technically Assisted Rehabilitation (TAR '09), pp. 18–19, Berlin, Germany, 2009.
  11. C. Pylatiuk, A. Kargov, I. Gaiser, T. Werner, S. Schulz, and G. Bretthauer, “Design of a flexible fluidic actuation system for a hybrid elbow orthosis,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '09), pp. 167–171, June 2009. View at Publisher · View at Google Scholar
  12. A. Kargov, I. Gaiser, H. Klosek et al., “Design and evaluation of a pneumatically driven anthropomorphic gripper for service robotics,” in Proceedings of the International Scientific-and-Technological Exhibition-Congress Mechatronics and Robotics, St. Petersburg, Russia, October 2007.
  13. I. Gaiser, A. Kargov, S. Schulz, and G. Bretthauer, “Enhanced flexible fluidic actuators for biologically inspired lightweight robots with inherent compliance,” in Proceedings of the Workshop on Actuation & Sensing in Robotics, Saarbrcken, Germany, October 2010.
  14. D. S. Andreasen, S. K. Allen, and D. A. Backus, “Exoskeleton with EMG based active assistance for rehabilitation,” in Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics (ICORR '05), vol. 2005, pp. 333–336, 2005. View at Publisher · View at Google Scholar
  15. O. Schill, R. Rupp, C. Pylatiuk, S. Schulz, and M. Reischl, “Automatic adaptation of a self-adhesive multi-electrode array for active wrist joint stabilization in tetraplegic SCI individuals,” in Proceedings of the IEEE Toronto International Conference on Science and Technology for Humanity (TIC-STH '09), pp. 708–713, 2009. View at Publisher · View at Google Scholar
  16. J. Rosen, M. Brand, M. B. Fuchs, and M. Arcan, “A myosignal-based powered exoskeleton system,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 31, no. 3, pp. 210–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. DC 20546-0001 Washington, Man-Systems Integration Standards NASASTD-3000, vol. I, Public Communications Office NASA Headquarters Suite 5K39 Washington, DC 20546-0001, 1995.
  18. O. Schill, R. Wiegand, B. Schmitz et al., “OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity,” Biomedizinische Technik, vol. 56, no. 1, pp. 35–44, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. I. A. Murray and G. R. Johnson, “A study of the external forces and moments at the shoulder and elbow while performing every day tasks,” Clinical Biomechanics, vol. 19, no. 6, pp. 586–594, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. Wiegand, B. Schmitz, C. Pylatiuk, S. Schulz, and R. Rupp, “Fluidic actuation and sensors of the elbow joint in the hybrid orthosis othojacket,” Biomedizinische Technik, vol. 55, no. s1, 2010. View at Google Scholar
  21. G. A. Zaech, Paraplegie—Ganzheitliche Rehabilitation, Karger, 2005.
  22. W. Michael, M. D. Keith, B. S. Kathryn Stroh Wuolle et al., “Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis,” Journal of Hand Surgery, vol. 19, no. 2, pp. 209–218, 1994. View at Google Scholar
  23. B. T. Smith, M. J. Mulcahey, and R. R. Betz, “Quantitative comparison of grasp and release abilities with and without functional neuromuscular stimulation in adolescents with tetraplegia,” Paraplegia, vol. 34, no. 1, pp. 16–23, 1996. View at Google Scholar