Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2013 (2013), Article ID 256364, 14 pages
http://dx.doi.org/10.1155/2013/256364
Research Article

A Comparison between Two Force-Position Controllers with Gravity Compensation Simulated on a Humanoid Arm

1R&D Department, Creative Design Laboratory, Humanot s.r.l., via Modigliani 7-59100 Prato, Italy
2Department of Modern Mechanical Engineering, Waseda University, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
3Humanoid Robotics Institute, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
4The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy

Received 31 October 2012; Revised 29 January 2013; Accepted 29 January 2013

Academic Editor: Huosheng Hu

Copyright © 2013 Giovanni Gerardo Muscolo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, Springer, London, UK, 2nd edition, 2000.
  2. L. Zollo, B. Siciliano, E. Guglielmelli, and P. Dario, “A bio-inspired approach for regulating visco-elastic properties of a robot arm,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3576–3581, Taipei, Taiwan, September 2003. View at Scopus
  3. G. Tonietti, R. Schiavi, and A. Bicchi, “Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 526–531, Barcelona, Spain, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. N. G. Tsagarakis, M. Laffranchi, B. Vanderborght, and D. G. Caldwell, “A compact soft actuator unit for small scale human friendly robots,” in IEEE International Conference on Robotics and Automation. Kobe International Conference Center, Kobe, Japan, May 2009.
  5. D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of pneumatic muscle actuators,” IEEE Control Systems Magazine, vol. 15, no. 1, pp. 40–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zollo, B. Siciliano, A. De Luca, and E. Guglielmelli, “PD control with online gravity compensation for robots with flexible links,” in Proceedings of the European Control Conference, Kos, Greece, July 2007.
  7. G. G. Muscolo, C. T. Recchiuto, K. Hashimoto, C. Laschi, P. Dario, and A. Takanishi, “A method for the calculation of the effective Center of Mass of humanoid robots,” in Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids '11), pp. 371–376, Bled, Slovenia, October 2011.
  8. G. G. Muscolo, C. T. Recchiuto, K. Hashimoto, P. Dario, and A. Takanishi, “Towards an improvement of the SABIAN humanoid robot: from design to optimisation,” Journal of Mechanical Engineering and Automation, Scientific & Academic Publishing, vol. 2, no. 4, pp. 80–84, 2012. View at Google Scholar
  9. Y. Ogura, H. Aikawa, K. Shimomura et al., “Development of a humanoid robot capable of leaning on a walk-assist machine,” in Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob '06), pp. 835–840, Pisa, Italy, February 2006. View at Publisher · View at Google Scholar · View at Scopus