Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2018, Article ID 6756027, 12 pages
https://doi.org/10.1155/2018/6756027
Research Article

Biomechanic and Energetic Effects of a Quasi-Passive Artificial Gastrocnemius on Transtibial Amputee Gait

Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Correspondence should be addressed to Hugh Herr; ude.tim.aidem@rrehh

Received 15 April 2017; Revised 16 August 2017; Accepted 25 September 2017; Published 1 March 2018

Academic Editor: Kazuo Kiguchi

Copyright © 2018 Michael F. Eilenberg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Struyf, C. M. van Heugten, M. W. Hitters, and R. J. Smeets, “The Prevalence of Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 3, pp. 440–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Gailey, K. Allen, J. Castles, J. Kucharik, and M. Roeder, “Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use,” Journal of Rehabilitation Research and Development, vol. 45, no. 1, pp. 15–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Ehde, J. M. Czerniecki, D. G. Smith et al., “Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 8, pp. 1039–1044, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P.-F. Su, S. A. Gard, R. D. Lipschutz, and T. A. Kuiken, “Gait characteristics of persons with bilateral transtibial amputations,” Journal of Rehabilitation Research and Development , vol. 44, no. 4, pp. 491–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Winter and S. E. Sienko, “Biomechanics of below-knee amputee gait,” Journal of Biomechanics, vol. 21, no. 5, pp. 361–367, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. N. H. Molen, “Energy/speed relation of below-knee amputees walking on a motor-driven treadmill,” Internationale Zeitschrift für Angewandte Physiologie Einschließlich Arbeitsphysiologie, vol. 31, no. 3, pp. 173–185, 1973. View at Publisher · View at Google Scholar · View at Scopus
  7. R. L. Waters, J. Perry, D. Antonelli, and H. Hislop, “Energy cost of walking of amputees: the influence of level of amputation,” The Journal of Bone & Joint Surgery, vol. 58, no. 1, pp. 42–46, 1976. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hu and R. G. Gordon, “Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition,” Journal of Applied Physics, vol. 71, no. 2, p. 880, 1992. View at Publisher · View at Google Scholar
  9. H. M. Herr and A. M. Grabowski, “Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B Biological Science, vol. 279, no. 1728, pp. 457–464, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Hill and H. Herr, “Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '13), vol. 10, pp. 1–6, IEEE, Seattle, WA, USA, June 2013. View at Publisher · View at Google Scholar
  11. C. H. Soo and J. M. Donelan, “Mechanics and energetics of step-to-step transitions isolated from human walking,” Journal of Experimental Biology, vol. 213, no. Pt 24, pp. 4265–4271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. D. Kuo, J. M. Donelan, and A. Ruina, “Energetic consequences of walking like an inverted pendulum: step-to-step transitions,” Exercise and Sport Sciences Reviews, vol. 33, no. 2, pp. 88–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Donelan, R. Kram, and A. D. Kuo, “Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking,” Journal of Experimental Biology, vol. 205, no. 23, pp. 3717–3727, 2002. View at Google Scholar · View at Scopus
  14. A. D. Kuo, “Energetics of actively powered locomotion using the simplest walking model,” Journal of Biomechanical Engineering, vol. 124, no. 1, pp. 113–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Meinders, A. Gitter, and J. M. Czerniecki, “The role of ankle plantar flexor muscle work during walking,” Journal of rehabilitation medicine, vol. 30, no. 1, pp. 39–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. R. R. Neptune, S. A. Kautz, and F. E. Zajac, “Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking,” Journal of Biomechanics, vol. 34, no. 11, pp. 1387–1398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Hof, J. Nauta, E. R. van der Knaap, M. A. A. Schallig, and D. P. Struwe, “Calf muscle work and segment energy changes in human treadmill walking,” Journal of Electromyography & Kinesiology, vol. 2, no. 4, pp. 203–216, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Caputo and S. H. Collins, “Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking,” Scientific Reports, vol. 4, article no. 7213, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Williams, A. Grabowski, H. Herr, and S. D’Andrea, Electromyographic Effects of Using a Powered Ankle-Foot Prosthesis, American Society of Biomechanics, 2012.
  20. J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. Van Asseldonk, and H. van der Kooij, “Design and Evaluation of the Gait Rehabilitation Robot LOPES,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, 2007. View at Google Scholar
  21. J. E. Pratt, B. T. Krupp, C. J. Morse, and S. H. Collins, “The RoboKnee: an exoskeleton for enhancing strength and endurance during walking,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '04), vol. 3, pp. 2430–2435, IEEE, May 2004. View at Scopus
  22. P. P. Pott, S. I. Wolf, J. Block et al., “Knee-ankle-foot orthosis with powered knee for support in the elderly,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 231, no. 8, pp. 715–727, 2017. View at Publisher · View at Google Scholar · View at Scopus
  23. D. P. Ferris, J. M. Czerniecki, and B. Hannaford, “An ankle-foot orthosis powered by artificial pneumatic muscles,” Journal of Applied Biomechanics, vol. 21, no. 2, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. G. S. Sawicki and D. P. Ferris, “A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition,” Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 1, p. 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. P. Ferris, K. E. Gordon, G. S. Sawicki, and A. Peethambaran, “An improved powered ankle-foot orthosis using proportional myoelectric control,” Gait & Posture, vol. 23, no. 4, pp. 425–428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Wehner, B. Quinlivan, P. M. Aubin et al., “A lightweight soft exosuit for gait assistance,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '13), pp. 3362–3369, May 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. M. B. Wiggin, G. S. Sawicki, and S. H. Collins, “An exoskeleton using controlled energy storage and release to aid ankle propulsion,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '11), pp. 1–5, Zurich, Switzerland, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Walsh, K. Endo, and H. Herr, “A quasi-passive leg exoskeleton for load-carrying augmentation,” International Journal of Humanoid Robotics, vol. 4, no. 3, pp. 487–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Elliott, A. Marecki, and H. Herr, “Design of a clutch-spring knee exoskeleton for running,” Journal of Medical Devices, Transactions of the ASME, vol. 8, no. 3, Article ID 031002, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Cherry, D. J. Choi, K. J. Deng, S. Kota, and D. P. Ferris, “Design and Fabrication of an Elastic Knee Orthosis: Preliminary Results,” in Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 565–573, Philadelphia, PA, USA, 2006. View at Publisher · View at Google Scholar
  31. M. Ishikawa, P. V. Komi, M. J. Grey, V. Lepola, and G.-P. Bruggemann, “Muscle-tendon interaction and elastic energy usage in human walking,” Journal of Applied Physiology, vol. 99, no. 2, pp. 603–608, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Endo and H. Herr, “A model of muscle-tendon function in human walking,” in Proceedings of the 2009 IEEE International Conference on Robotics and Automation, ICRA '09, pp. 1909–1915, IEEE, Kobe, Japan, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Endo and H. Herr, “Human walking model predicts joint mechanics, electromyography and mechanical economy,” in Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 4663–4668, St. Louis, MO, USA, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Endo, D. Paluska, and H. Herr, “A quasi-passive model of human leg function in level-ground walking,” in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006, pp. 4935–4939, Beijing, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Endo, E. Swart, and H. Herr, “An artificial gastrocnemius for a transtibial prosthesis,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, pp. 5034–5037, Minneapolis, MN, USA, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Palmer, Sagittal Plane Characterization of Normal Human Ankle Function Across a Range of Walking Gait Speeds , Masters Thesis [Masters, thesis], MIT, 2002.
  37. J. M. Brockway, “Derivation of formulae used to calculate energy expenditure in man,” Hum Nutr Clin Nutr, vol. 41, no. 6, pp. 463–471, 1987. View at Google Scholar
  38. A. S. McIntosh, K. T. Beatty, L. N. Dwan, and D. R. Vickers, “Gait dynamics on an inclined walkway,” Journal of Biomechanics, vol. 39, no. 13, pp. 2491–2502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P.-C. Kao, C. L. Lewis, and D. P. Ferris, “Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton,” Journal of Biomechanics, vol. 43, no. 2, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. L. Lewis and D. P. Ferris, “Erratum to "Invariant hip moment pattern while walking with a robotic hip exoskeleton" [J. Biomech. 44 (5) (2011) 789-793],” Journal of Biomechanics, vol. 47, no. 7, p. 1748, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society B, vol. 126, pp. 136–195, 1938. View at Google Scholar
  42. A. Hill, “The efficiency of mechanical power development during muscular shortening and its relation to load,” Proceedings of the Royal Society B Biological Science, vol. 159, no. 975, pp. 319–324, 1964. View at Google Scholar
  43. R. J. Zmitrewicz, R. R. Neptune, and K. Sasaki, “Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: A theoretical study,” Journal of Biomechanics, vol. 40, no. 8, pp. 1824–1831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. R. Neptune, K. Sasaki, and S. A. Kautz, “The effect of walking speed on muscle function and mechanical energetics,” Gait & Posture, vol. 28, no. 1, pp. 135–143, 2008. View at Publisher · View at Google Scholar · View at Scopus