Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 235158, 4 pages
http://dx.doi.org/10.1155/2009/235158
Research Article

Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

1Department of Chemistry/Biochemistry, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO 80903, USA
2Department of Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO 80903, USA

Received 26 May 2009; Revised 21 July 2009; Accepted 4 August 2009

Academic Editor: Mike McShane

Copyright © 2009 Everett Moding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. M. Van Haastert, B. Jastorff, J. E. Pinas, and T. M. Konijn, “Analogs of cyclic AMP as chemoattractants and inhibitors of Dictyostelium chemotaxis,” Journal of Bacteriology, vol. 149, no. 1, pp. 99–105, 1982. View at Google Scholar
  2. D. M. Bozzone, “Tested studies for laboratory teaching,” in Proceedings of the 14th Conference of the Association for Biology Laboratory Education (ABLE '93), C. A. Goldman, Ed., 1993.
  3. W. F. Loomis, The Development of Dictyostelium Discoideum, Academic Press, New York, NY, USA, 1982.
  4. R. J. Aerts, R. J. W. De Wit, and M. M. Van Lookeren Campagne, “Cyclic AMP induces a transient alkalinization in Dictyostelium,” FEBS Letters, vol. 220, no. 2, pp. 366–370, 1987. View at Google Scholar
  5. P. Devreotes and C. Janetopoulos, “Eukaryotic chemotaxis: distinctions between directional sensing and polarization,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20445–20448, 2003. View at Publisher · View at Google Scholar
  6. B. Van Duijn and K. Inouye, “Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4951–4955, 1991. View at Google Scholar
  7. H. Flaadt, R. Schaloske, and D. Malchow, “Mechanism of cAMP-induced H+-efflux of Dictyostelium cells: a role for fatty acids,” Journal of Biosciences, vol. 25, no. 3, pp. 243–252, 2000. View at Google Scholar
  8. H. Patel and D. L. Barber, “A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis,” Journal of Cell Biology, vol. 169, no. 2, pp. 321–329, 2005. View at Publisher · View at Google Scholar
  9. M. Fechheimer, C. Denny, R. F. Murphy, and D. L. Taylor, “Measurement of cytoplasmic pH in Dictyostelium discoideum by using a new method for introducing macromolecules into living cells,” European Journal of Cell Biology, vol. 40, no. 2, pp. 242–247, 1986. View at Google Scholar
  10. K. Inouye, “Measurements of intracellular pH and its relevance to cell differentiation in Dictyostelium discoideum,” Journal of Cell Science, vol. 76, pp. 235–245, 1985. View at Google Scholar
  11. G. A. Jamieson Jr., W. A. Frazier, and P. H. Schlesinger, “Transient increase in intracellular pH during Dictyostelium differentiation,” Journal of Cell Biology, vol. 99, no. 5, pp. 1883–1887, 1984. View at Google Scholar
  12. R. Engel, P. J. M. Van Haastert, and A. J. W. G. Visser, “Spectral characterization of Dictyostelium autofluorescence,” Microscopy Research and Technique, vol. 69, no. 3, pp. 168–174, 2006. View at Publisher · View at Google Scholar
  13. E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert, and R. Kopelman, “Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells,” Analytical Chemistry, vol. 75, no. 15, pp. 3784–3791, 2003. View at Publisher · View at Google Scholar
  14. I. Tatischeff and R. Klein, “Extracellular lumazine from aggregating Dictyostelium discoideum cells. Influence of pH on its fluorescence,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 365, no. 10, pp. 1255–1262, 1984. View at Google Scholar
  15. B. Hoffmann and H. Kosegarten, “FITC-dextran for measuring apoplast pH and apoplastic pH gradients between various cell types in sunflower leaves,” Physiologia Plantarum, vol. 95, no. 3, pp. 327–335, 1995. View at Publisher · View at Google Scholar
  16. F. Brenot, L. Aubry, J. B. Martin, M. Satre, and G. Klein, “Kinetics of endosomal acidification of Dictyostelium discoideum amoebae. 31P-NMR evidence for a very acidic early endosomal compartment,” Biochimie, vol. 74, no. 9-10, pp. 883–895, 1992. View at Publisher · View at Google Scholar
  17. J. E. Jentoft and C. D. Town, “Intracellular pH in Dictyostelium discoideum: a 31P nuclear magnetic resonance study,” Journal of Cell Biology, vol. 101, no. 3, pp. 778–784, 1985. View at Google Scholar
  18. C. D. Town, J. A. Dominov, B. A. Karpinski, and J. E. Jentoft, “Relationships between extracellular pH, intracellular pH, and gene expression in Dictyostelium discoideum,” Developmental Biology, vol. 122, no. 2, pp. 354–362, 1987. View at Google Scholar
  19. H. A. Clark, M. Hoyer, M. A. Philbert, and R. Kopelman, “Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors,” Analytical Chemistry, vol. 71, no. 21, pp. 4831–4836, 1999. View at Publisher · View at Google Scholar
  20. H. Sun, A. M. Scharff-Poulsen, H. Gu, and K. Almdal, “Synthesis and characterization of ratiometric, pH sensing nanoparticles with covalently attached fluorescent dyes,” Chemistry of Materials, vol. 18, no. 15, pp. 3381–3384, 2006. View at Publisher · View at Google Scholar
  21. J. Peng, X. He, K. Wang, W. Tan, Y. Wang, and Y. Liu, “Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors,” Analytical and Bioanalytical Chemistry, vol. 388, no. 3, pp. 645–654, 2007. View at Publisher · View at Google Scholar
  22. H. A. Clark, R. Kopelman, R. Tjalkens, and M. A. Philbert, “Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors,” Analytical Chemistry, vol. 71, no. 21, pp. 4837–4843, 1999. View at Publisher · View at Google Scholar
  23. J. P. Sumner, J. W. Aylott, E. Monson, and R. Kopelman, “A fluorescent PEBBLE nanosensor for intracellular free zinc,” Analyst, vol. 127, no. 1, pp. 11–16, 2002. View at Publisher · View at Google Scholar
  24. C. Delmotte and A. Delmas, “Synthesis and fluorescence properties of Oregon Green 514 labeled peptides,” Bioorganic and Medicinal Chemistry Letters, vol. 9, no. 20, pp. 2989–2994, 1999. View at Publisher · View at Google Scholar
  25. J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” Journal of the American Chemical Society, vol. 129, no. 27, pp. 8418–8419, 2007. View at Publisher · View at Google Scholar
  26. C. Xu and E. Bakker, “Multicolor quantum dot encoding for polymeric particle-based optical ion sensors,” Analytical Chemistry, vol. 79, no. 10, pp. 3716–3723, 2007. View at Publisher · View at Google Scholar