Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 790476, 9 pages
http://dx.doi.org/10.1155/2009/790476
Research Article

Schottky Junction Methane Sensors Using Electrochemically Grown Nanocrystalline-Nanoporous ZnO Thin Films

1Department of Electronics & Telecommunication Engineering, IC. Design & Fabrication Centre, Jadavpur University, Kolkata 700032, India
2Department of Physics, Chemistry and Biology, Linkoping University, SE-581 83 Linköping, Sweden

Received 29 December 2008; Accepted 1 July 2009

Academic Editor: Giorgio Sberveglieri

Copyright © 2009 P. K. Basu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Basu, P. Bhattacharyya, N. Saha, H. Saha, and S. Basu, “The superior performance of the electrochemically grown ZnO thin films as methane sensor,” Sensors and Actuators B, vol. 133, no. 2, pp. 357–363, 2008. View at Publisher · View at Google Scholar
  2. P. Bhattacharyya, P. K. Basu, H. Saha, and S. Basu, “Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method,” Sensors and Actuators B, vol. 124, no. 1, pp. 62–67, 2007. View at Publisher · View at Google Scholar
  3. P. K. Basu, P. Bhattacharyya, N. Saha, H. Saha, and S. Basu, “Methane sensing properties of platinum catalysed nano porous zinc oxide thin films derived by electrochemical anodization,” Sensor Letters, vol. 6, no. 1, pp. 219–225, 2008. View at Publisher · View at Google Scholar
  4. P. Bhattacharyya, P. K. Basu, C. Lang, H. Saha, and S. Basu, “Noble metal catalytic contacts to sol-gel nanocrystalline zinc oxide thin films for sensing methane,” Sensors and Actuators B, vol. 129, no. 2, pp. 551–557, 2008. View at Publisher · View at Google Scholar
  5. P. Bhattacharyya, P. K. Basu, H. Saha, and S. Basu, “Fast response methane sensor based on Pd(Ag)/ZnO/Zn MIM structure,” Sensor Letters, vol. 4, no. 4, pp. 371–376, 2006. View at Publisher · View at Google Scholar
  6. P. K. Basu, S. K. Jana, H. Saha, and S. Basu, “Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films,” Sensors and Actuators B, vol. 135, no. 1, pp. 81–88, 2008. View at Publisher · View at Google Scholar
  7. S. W. Hla, P. Lacovig, G. Comelli, A. Baraldi, M. Kiskinova, and R. Rosei, “Orientational anisotropy in oxygen dissociation on Rh(110),” Physical Review B, vol. 60, no. 11, pp. 7800–7803, 1999. View at Google Scholar
  8. A. Rothschild and Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” Journal of Applied Physics, vol. 95, no. 11, pp. 6374–6380, 2004. View at Publisher · View at Google Scholar
  9. S. L. Tait, Z. Dohnalek, C. T. Campbell, and B. D. Kay, “Methane adsorption and dissociation and oxygen adsorption and reaction with CO on Pd nanoparticles on MgO(1 0 0) and on Pd(1 1 1),” Surface Science, vol. 591, no. 1–3, pp. 90–107, 2005. View at Publisher · View at Google Scholar
  10. M.-S. Liao, C.-T. Au, and C.-F. Ng, “Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study,” Chemical Physics Letters, vol. 272, no. 5-6, pp. 445–452, 1997. View at Google Scholar
  11. V. R. Shinde, T. P. Gujar, and C. D. Lokhande, “Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization,” Sensors and Actuators B, vol. 123, no. 2, pp. 701–706, 2007. View at Publisher · View at Google Scholar
  12. M. Lofdahl, C. Utaiwasin, A. Carlsson, I. Lundstrom, and M. Eriksson, “Gas response dependence on gate metal morphology of field-effect devices,” Sensors and Actuators B, vol. 80, no. 3, pp. 183–192, 2001. View at Publisher · View at Google Scholar
  13. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Relationship between gas sensitivity and microstructure of porous SnO2,” Journal of the Electrochemical Society, vol. 58, p. 1143, 1990. View at Google Scholar
  14. R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin-film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” Journal of Applied Physics, vol. 62, no. 3, pp. 1074–1083, 1987. View at Publisher · View at Google Scholar
  15. M. Wang and Y. Feng, “Palladium-silver thin film for hydrogen sensing,” Sensors and Actuators B, vol. 123, no. 1, pp. 101–106, 2007. View at Publisher · View at Google Scholar
  16. S. Eriksson, M. Nilsson, M. Boutonnet, and S. Järås, “Partial oxidation of methane over rhodium catalysts for power generation applications,” Catalysis Today, vol. 100, no. 3-4, pp. 447–451, 2005. View at Publisher · View at Google Scholar
  17. V. A. Drozdov, P. G. Tsyrulnikov, V. V. Popovskii, N. N. Bulgakov, E. M. Moroz, and T. G. Galeev, “Comparative study of the activity of Al-Pd and Al-Pt catalysts in deep oxidation of hydrocarbons,” Reaction Kinetics and Catalysis Letters, vol. 27, no. 2, pp. 425–427, 1985. View at Publisher · View at Google Scholar
  18. R. Löber and D. Hennig, “Interaction of hydrogen with transition metal fcc(111) surfaces,” Physical Review B, vol. 55, no. 7, pp. 4761–4765, 1997. View at Google Scholar
  19. E. P. J. Mallens, J. H. B. J. Hoebink, and G. B. Marin, “The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum,” Journal of Catalysis, vol. 167, no. 1, pp. 43–56, 1997. View at Google Scholar
  20. L. Opara, B. Klein, and H. Zuchnerh, “Hydrogen-diffusion in Pd1xAgx(0x1),” Journal of Alloys and Compounds, vol. 253-254, pp. 378–380, 1997. View at Google Scholar
  21. I. Lundström, H. Sundgren, F. Winquist, M. Eriksson, C. Krantz-Rülcker, and A. Lloyd-Spetz, “Twenty-five years of field effect gas sensor research in Linköping,” Sensors and Actuators B, vol. 121, no. 1, pp. 247–262, 2007. View at Publisher · View at Google Scholar
  22. S. Liu, K. Takahashi, K. Fuchigami, and K. Uematsu, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: catalyst deactivation,” Applied Catalysis A, vol. 299, no. 1-2, pp. 58–65, 2006. View at Publisher · View at Google Scholar
  23. H. Zhang, R. L. Penn, R. J. Hamers, and J. F. Banfield, “Enhanced adsorption of molecules on surfaces of nanocrystalline particles,” Journal of Physical Chemistry B, vol. 103, no. 22, pp. 4656–4662, 1999. View at Google Scholar
  24. V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, and R. Yakimova, “Oxygen absorption effect on the sensitivity and material stability of ZnO nanostructured films,” in Proceedings of IEEE Sensors, pp. 874–877, Lecce, Italy, October 2008. View at Publisher · View at Google Scholar