Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 871580, 17 pages
http://dx.doi.org/10.1155/2009/871580
Review Article

Properties of Specialist Fibres and Bragg Gratings for Optical Fiber Sensors

Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia

Received 4 March 2009; Accepted 9 June 2009

Academic Editor: Christos Riziotis

Copyright © 2009 John Canning. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. BCC, “Fiber Optic Sensors,” (Report code: 1AS002D), 2009, http://www.photonics.com.
  2. H. J. Kalinowski, I. Abeb, J. A. Simõesc, and A. Ramosc, “Application of fibre Bragg grating sensors in biomechanics,” in Trends in Photonics, J. Canning, Ed., chapter 10, Research Signpost, Kerala, India, 2008. View at Google Scholar
  3. M. S. Milczewski, J. C. Cardozo da Silva, L. Carvalho, J. Canning, and H. J. Kalinowski, “Optical fiber sensors in dentistry,” in Trends in Photonics, J. Canning, Ed., chapter 11, Research Signpost, Kerala, India, 2008. View at Google Scholar
  4. F. I. Baldini and A. G. Mignani, “Biomedical fibre optic sensors,” in Handbook of Optical Fibre Sensing Technology, J. M. López-Higuera, Ed., Wiley Interscience, Chichester, UK, 2002. View at Google Scholar
  5. C. Martelli, J. Canning, J. R. Reimers et al., “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” Journal of the American Chemical Society, vol. 131, no. 8, pp. 2925–2933, 2009. View at Publisher · View at Google Scholar
  6. I. Latka, W. Ecke, B. Hoefer, T. Frangen, R. Willsch, and A. Reutlinger, “Micro bending beam based optical fiber grating sensors for physical and chemical measurands,” in Proceedings of the 17th International Conference on Optical Fibre Sensors, vol. 5855 of Proceedings of SPIE, pp. 94–97, Bruges, Belgium, May 2005. View at Publisher · View at Google Scholar
  7. W. Du, X. M. Tao, H. Y. Tam, and C. L. Choy, “Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites,” Composite Structures, vol. 42, no. 3, pp. 217–229, 1998. View at Publisher · View at Google Scholar
  8. R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest (OFS '02), pp. 49–54, Portland, Ore, USA, May 2002.
  9. B. Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology, vol. 9, no. 2, pp. 57–79, 2003. View at Publisher · View at Google Scholar
  10. I. Latka, W. Ecke, B. Höfer, C. Chojetzki, and A. Reutlinger, “Fiber optic sensors for the monitoring of cryogenic spacecraft tank structures,” in Photonics North 2004: Photonic Applications in Telecommunications, Sensors, vol. 5579 of Proceedings of SPIE, pp. 195–204, Ottawa, Canada, November 2004. View at Publisher · View at Google Scholar
  11. W. Ecke, K. Schroeder, M. Kautz et al., “On-line characterization of impacts on electrical train current collectors using integrated optical fiber grating sensor network,” in Smart Structures and Materials 2005: Smart Sensor Technology and Measurement Systems, vol. 5758 of Proceedings of SPIE, pp. 114–123, San Diego, Calif, USA, March 2005. View at Publisher · View at Google Scholar
  12. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Measurement Science and Technology, vol. 17, no. 5, pp. 1167–1172, 2006. View at Publisher · View at Google Scholar
  13. J. C. Cardozo da Silva, C. Martelli, H. J. Kalinowski, E. Penner, J. Canning, and N. Groothoff, “Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings,” Optics and Lasers in Engineering, vol. 45, no. 1, pp. 88–92, 2007. View at Publisher · View at Google Scholar
  14. A. C. L. Wong, P. A. Childs, R. Berndt, T. Macken, G.-D. Peng, and N. Gowripalan, “Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors,” Cement and Concrete Composites, vol. 29, no. 6, pp. 490–497, 2007. View at Publisher · View at Google Scholar
  15. H. Soejima, T. Ogisu, H. Yoneda, Y. Okabe, N. Takeda, and Y. Koshioka, “Demonstration of detectability of SHM system with FBG/PZT hybrid system in composite wing box structure,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 6932 of Proceedings of SPIE, San Diego, Calif, USA, March 2008. View at Publisher · View at Google Scholar
  16. V. G. M. Annamdas, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 6932 of Proceedings of SPIE, San Diego, Calif, USA, March 2008. View at Publisher · View at Google Scholar
  17. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring—present status and applications,” Sensors and Actuators A, vol. 147, no. 1, pp. 150–164, 2008. View at Google Scholar
  18. J. A. Epaarachchi, J. Canning, and M. Stevenson, “Investigation of the response of embedded Near Infrared FBG (830 nm) sensors in glass fibre composites,” in Proceedings of 19th International Conference on Optical Fibre Sensors, vol. 7004 of Proceedings SPIE, 2008.
  19. A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Spectrally coded multiplexing techniques in fibre-optic sensor systems,” in Trends in Photonics, J. Canning, Ed., chapter 8, Research Signpost, Kerala, India, 2008. View at Google Scholar
  20. P. Kaiser and H. W. Astle, “Low-loss single-material fibers made from pure fused silica,” Bell System Technical Journal, vol. 53, no. 6, pp. 1021–1039, 1974. View at Google Scholar
  21. K. Digweed-Lyytikainen, C. A. de Francisco, D. Spadoti et al., “Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment,” Microwave and Optical Technology Letters, vol. 49, no. 4, pp. 872–874, 2007. View at Publisher · View at Google Scholar
  22. H. R. Sørenson, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Control of the wavelength dependent thermo-optic coefficients in structured fibres,” Optics Express, vol. 14, no. 14, pp. 6428–6433, 2006. View at Google Scholar
  23. N. Mothe, D. Pagnoux, H. Phan et al., “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Optics Express, vol. 16, no. 23, pp. 19018–19033, 2008. View at Google Scholar
  24. J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Optics Express, vol. 16, no. 20, pp. 15700–15708, 2008. View at Publisher · View at Google Scholar
  25. J. Canning, “New trends in structured optical fibres for telecommunications and sensing,” in Proceedings of the 5th International Conference on Optical Communications and Networks and the 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO '06), Chengdu, China, 2006.
  26. C. Martelli, J. Canning, and B. Ashton, “Add drop gas reference cell with acetylene,” in Proceedings of the Optical Fiber Sensors Conference (OFS '06), Cancun, Mexico, 2006.
  27. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
  28. D. Kácik, I. Turek, I. Martincek, J. Canning, and K. Lyytikäinen, “The role of diffraction in determining the short wavelength losses edge of photonic crystal fibres,” in Proceedings of the Australian Conference on Optical Fibre Technology (ACOFT '05), Sydney, Australia, 2005.
  29. C. Martelli, J. Canning, M. Kristensen, and N. Groothoff, “Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction,” Sensors, vol. 7, no. 11, pp. 2492–2498, 2007. View at Google Scholar
  30. J. Canning, “Fresnel optics inside optical fibres,” in Photonics Research Developments, Nova Science Publishers, Hauppauge, NY, USA, 2009. View at Google Scholar
  31. J. Canning, E. Buckley, and K. Lyytikäinen, “Propagation in air by field superposition of scattered light within a Fresnel fibre,” Optics Letters, vol. 28, no. 4, pp. 2330–2332, 2003. View at Google Scholar
  32. J. Canning, E. Buckley, and K. Lyytikäinen, “Multiple source generation using air-structured optical waveguides for optical field shaping and transformation within and beyond the waveguide,” Optics Express, vol. 11, no. 4, pp. 347–358, 2003. View at Google Scholar
  33. J. Canning, E. Buckley, and K. Lyytikäinen, “All-fibre phase-aperture zone plate fresnel lenses,” Electronics Letters, vol. 39, no. 3, pp. 311–312, 2003. View at Google Scholar
  34. C. Martelli and J. Canning, “Fresnel fibres with core-defects for optical sensing,” in Proceedings of Optical Fiber Sensors Conference (OFS '06), Cancun Mexico, 2007, postdeadline paper, reproduced in C. Martelli, PhD dissemination, University of Sydney, 2007.
  35. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” in Optics Letters, vol. 29, no. 11, pp. 1209–1211, June 2004. View at Publisher · View at Google Scholar
  36. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Applied Physics Letters, vol. 85, no. 21, pp. 4854–4856, 2004. View at Publisher · View at Google Scholar
  37. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Optics Express, vol. 15, no. 6, pp. 3169–3176, 2007. View at Publisher · View at Google Scholar
  38. N. Skivesen, J. Canning, M. Kristensen, C. Martelli, A. Tetu, and L. H. Frandsen, “Photonic crystal waveguide-based biosensor,” in Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC '08), pp. 1–3, San Diego, Calif, USA, February 2008. View at Publisher · View at Google Scholar
  39. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny et al., “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics, vol. 1, no. 2, pp. 115–118, 2007. View at Publisher · View at Google Scholar
  40. C. M. Rollinson, S. M. Orbons, S. T. Huntington et al., “Metal-free scanning optical microscopy with a fractal fiber probe,” Optics Express, vol. 17, no. 3, pp. 1772–1780, 2009. View at Publisher · View at Google Scholar
  41. C. Martelli, J. Canning, and K. Lyytikäinen, “Water core Fresnel fibre,” Optics Express, vol. 13, no. 10, pp. 3890–3895, 2005. View at Google Scholar
  42. S. Donati, Electro-Optical Instrumentation: Sensing and Measuring with Lasers, Prentice-Hall, Englewood Cliffs, NJ, USA, 2004.
  43. U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” Journal of the American Ceramic Society, vol. 58, no. 7-8, pp. 330–335, 1975. View at Google Scholar
  44. G. W. Scherer and A. R. Cooper, “Thermal stresses in clad-glass fibers,” Journal of the American Ceramic Society, vol. 63, no. 5-6, pp. 346–347, 1980. View at Google Scholar
  45. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U.-C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Applied Optics, vol. 41, no. 1, pp. 21–26, 2002. View at Google Scholar
  46. B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, and W.-T. Han, “Observation and analysis of residual stress development resulting from OH impurity in optical fibers,” Optics Letters, vol. 27, no. 10, pp. 806–808, 2002. View at Google Scholar
  47. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data Part A: Silica Glass and Binary Silicate Glasses, vol. 15 of Physical Sciences Data, Elsevier, Amsterdam, The Netherlands, 1983.
  48. J. Bland-Hawthorn, M. Englund, and G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Optics Express, vol. 12, no. 24, pp. 5902–5909, 2004. View at Publisher · View at Google Scholar
  49. B. Leconte, W.-X. Xie, M. Douay et al., “Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO2 fiber based on a local Kramers-Kronig transformation of excess loss spectra,” Applied Optics, vol. 36, no. 24, pp. 5923–5930, 1997. View at Google Scholar
  50. H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Applied Physics Letters, vol. 68, no. 22, pp. 3069–3071, 1996. View at Publisher · View at Google Scholar
  51. N. H. Ky, H. G. Limberger, R. P. Salathé, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Optics Communications, vol. 225, no. 4–6, pp. 313–318, 2003. View at Publisher · View at Google Scholar
  52. J. Canning, “Fibre gratings and devices for sensors and laser,” Laser and Photonics Reviews, vol. 2, no. 4, pp. 275–289, 2008. View at Publisher · View at Google Scholar
  53. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 1: preforms,” Applied Optics, vol. 25, no. 7, pp. 1093–1098, 1986. View at Google Scholar
  54. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: fibers,” Applied Optics, vol. 26, no. 7, pp. 1175–1182, 1987. View at Google Scholar
  55. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors, vol. 8, no. 10, pp. 6448–6452, 2008. View at Publisher · View at Google Scholar
  56. C. Martelli, J. Canning, B. Gibson, and S. Huntington, “Bend loss in structured optical fibres,” Optics Express, vol. 15, no. 26, pp. 17639–17644, 2007. View at Publisher · View at Google Scholar
  57. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Optics Letters, vol. 28, no. 4, pp. 233–235, 2003. View at Google Scholar
  58. N. Groothoff, C. Martelli, J. Canning, and K. Lyytikäinen, “Fibre Bragg grating in Fresnel fibre with temperature and strain characterisation,” in Proceedings of Australian Conference on Optical Fibre Technology (ACOFT '05), Sydney, Australia, 2005.
  59. J. Albert, B. Malo, F. Bilodeau et al., “Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser,” Optics Letters, vol. 19, no. 6, pp. 387–389, 1994. View at Google Scholar
  60. J. Canning, H. G. Inglis, M. G. Sceats, and P. Hill, “Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique,” Optics Letters, vol. 20, p. 2189, 1995. View at Google Scholar
  61. J. Canning, “Gratings and grating devices in structured fibres using 193nm from an ArF laser,” in Proceedings of the OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling (BGPP '07), Quebec City, Canada, 2007, (invited).
  62. J. Canning, Ed., Proceedings of the 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, Darlington Centre, University of Sydney, Sydney, Australia.
  63. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription using femtosecond laser sources,” in Trends in Photonics, J. Canning, Ed., chapter 4, Research Signpost, Kerala, India, 2008. View at Google Scholar
  64. B. Zhang and M. Kahriziet, “High temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sensors Journal, vol. 7, pp. 586–590, 2007. View at Google Scholar
  65. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultra-high temperature regenerated gratings in boron codoped germanosilicate optical fibre using 193 nm,” Optics Letters, vol. 33, no. 16, pp. 1917–1919, 2008. View at Google Scholar
  66. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” Journal of the Optical Society of America B, vol. 19, no. 8, pp. 1759–1765, 2002. View at Google Scholar
  67. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electronics Letters, vol. 40, no. 11, pp. 657–658, 2004. View at Publisher · View at Google Scholar
  68. A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Optics Express, vol. 12, no. 21, pp. 5160–5165, 2004. View at Publisher · View at Google Scholar
  69. D.-H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Optics Express, vol. 12, no. 19, pp. 4490–4495, 2004. View at Publisher · View at Google Scholar
  70. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photonics Technology Letters, vol. 16, no. 11, pp. 2535–2537, 2004. View at Publisher · View at Google Scholar
  71. M. J. F. Digonnet, H. K. Kim, S. Blin, V. Dangui, and G. S. Kino, “Sensitivity and stability of an air-core fiber-optic gyroscope,” in Optical Fiber Sensors, OSA Technical Digest (CD), Optical Society of America, 2006, paper ME1. View at Google Scholar
  72. A. Michie, J. Canning, I. Bassett et al., “Spun elliptically birefringent photonic crystal fibre,” Optics Express, vol. 15, no. 4, pp. 1811–1816, 2007. View at Publisher · View at Google Scholar
  73. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Applied Physics Letters, vol. 90, no. 15, Article ID 151113, 3 pages, 2007. View at Publisher · View at Google Scholar
  74. D. Káčik, I. Turek, I. Martinček, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Optics Express, vol. 12, no. 15, pp. 3465–3470, 2004. View at Publisher · View at Google Scholar
  75. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Applied Physics Letters, vol. 91, no. 9, Article ID 091109, 2007. View at Publisher · View at Google Scholar
  76. N. Groothoff, C. Martelli, and J. Canning, “A dual wavelength distributed feedback fibre laser,” Journal of Applied Physics, vol. 103, Article ID 013101, 2008. View at Google Scholar
  77. J. Canning, N. Groothoff, K. Cook et al., “Gratings in structured optical fibres,” Laser Chemistry, vol. 2008, Article ID 239417, 2008. View at Publisher · View at Google Scholar
  78. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” Journal of Physics D, vol. 37, no. 18, pp. R197–R216, 2004. View at Publisher · View at Google Scholar
  79. S. Foster, A. Tikhomirov, M. Englund, H. Inglis, G. Edvell, and M. Milnes, “A 16 channel fibre laser sensor array,” in Proceedings of the Australian Conference on Optical Fibre Technology (ACOFT '06), pp. 40–42, Melbourne, Australia, 2006. View at Publisher · View at Google Scholar
  80. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikäinen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Optics Letters, vol. 30, no. 14, pp. 1785–1787, 2005. View at Google Scholar
  81. M. Janos and J. Canning, “Permanent and transient resonances thermally induced in optical fibre Bragg gratings,” Electronics Letters, vol. 31, no. 12, pp. 1007–1009, 1995. View at Publisher · View at Google Scholar
  82. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Optics Express, vol. 10, no. 23, pp. 1314–1319, 2002. View at Google Scholar
  83. K. Lyytikäinen, Control of complex structural geometry in optical fibre drawing, Ph.D. thesis, School of Physics and Interdisciplinary Photonics Laboratories, The University of Sydney, Sydney, Australia, 2004.
  84. C. Martelli, J. Canning, N. Groothoff, and K. Lyttikainen, “Bragg gratings in photonic crystal fibres: strain and temperature characterisation,” in Proceedings of the 17th International Conference on Optical Fibre Sensors, M. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, Eds., vol. 5855 of Proceedings of SPIE, Bellingham, Wash, USA, 2005.
  85. J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Optics Communications, vol. 207, no. 1–6, pp. 35–39, 2002. View at Publisher · View at Google Scholar
  86. C. M. Rollinson, S. M. Orbons, S. T. Huntington et al., “Metal-free scanning optical microscopy with a fractal fibre probe,” Optics Express, vol. 17, no. 3, pp. 1772–1780, 2009. View at Google Scholar
  87. M. Åslund, J. Canning, S. D. Jackson, A. Teixeira, and K. Lyytikäinen, “Diffraction in air-clad fibres,” Optics Express, vol. 13, no. 14, pp. 5227–5233, 2005. View at Publisher · View at Google Scholar
  88. M. Åslund and J. Canning, “Air-clad fibres for astronomical instrumentation: focal-ratio degradation,” Experimental Astronomy, vol. 24, no. 1–3, pp. 1–7, 2009. View at Publisher · View at Google Scholar
  89. V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, New York, NY, USA, 2002.
  90. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science, vol. 298, no. 5592, pp. 399–402, 2002. View at Publisher · View at Google Scholar
  91. T. Ritari, J. Tuominen, H. Ludvigsen et al., “Gas sensing using air-guiding photonic bandgap fibers,” Optics Express, vol. 12, no. 17, pp. 4080–4087, 2004. View at Publisher · View at Google Scholar
  92. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sensors and Actuators B, vol. 105, no. 2, pp. 183–186, 2005. View at Publisher · View at Google Scholar
  93. J. Canning, E. Buckley, N. Groothoff, B. Luther-Davies, and J. Zagari, “UV laser cleaving of air-polymer structured fibre,” Optics Communications, vol. 202, no. 1–3, pp. 139–143, 2002. View at Publisher · View at Google Scholar
  94. J. Canning, E. Buckley, N. Groothoff, and S. Huntington, “Laser sculpting and shaping of air-polymer structured fibres,” in Proceedings Australian Conference on Optical Fibre Technology (ACOFT '03), Melbourne, Australia, 2003.
  95. H. Lehmann, S. Brueckner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in Proceedings of the 17th International Conference on Optical Fibre Sensors, vol. 5855 of Proceedings of SPIE, pp. 419–422, 2005. View at Publisher · View at Google Scholar
  96. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Fabrication of micro-channels in optical fibers using femtosecond laser pulses and selective chemical etching,” Optics Letters, vol. 31, p. 2559, 2006. View at Google Scholar
  97. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibres using focussed ion beam (FIB) milling,” Optics Letters, vol. 32, no. 12, pp. 1575–1577, 2007. View at Google Scholar
  98. C. Martelli, J. Canning, and K. Lyytikainen, “Water core Fresnel fibre,” Optics Express, vol. 13, no. 10, pp. 3890–3895, 2005. View at Google Scholar
  99. P. Yeh, A. Yariv, and E. Maron, “Theory of Bragg fiber,” Journal of the Optical Society of America, vol. 68, no. 9, pp. 1196–1201, 1978. View at Google Scholar
  100. G. Vienne, Y. Xu, C. Jakobsen et al., “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Optics Express, vol. 12, no. 15, pp. 3500–3508, 2004. View at Publisher · View at Google Scholar
  101. J. Knight, T. Birks, P. St. J. Russell, and D. M. Atkins, “All-silica singlemode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, no. 19, pp. 1547–1549, 1996. View at Google Scholar
  102. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, no. 5393, pp. 1476–1478, 1998. View at Google Scholar
  103. J. Broeng, S. E. Barkou, and A. Bjarklev, “Waveguiding by the photonic bandgap effect,” in Proceedings of the Topical Meeting on Electromagnetic Optics, pp. 67–68, EOS, hyeres, France, 1998.
  104. N. Venkataramn, M. T. Gallagher, C. M. Smith et al., “Low loss (13dB/km) air core photonic bandgap fibre,” in Proceedings of the European Conference on Optical Communications (ECOC '02), Copenhagen, Denmark, 2002, PD1.1.
  105. C. Martelli and J. Canning, “Fresnel fibres with omni-directional zone cross-sections,” Optics Express, vol. 15, no. 7, pp. 4281–4286, 2007. View at Google Scholar
  106. A. Dupuis, N. Guo, Y. Gao et al., “Prospective for biodegradable microstructured optical fibers,” Optics Letters, vol. 32, no. 2, pp. 109–111, 2007. View at Publisher · View at Google Scholar
  107. M. Mignanelli, K. Wani, J. Ballato, S. Foulger, and P. Brown, “Polymer microstructured fibers by one-step extrusion,” Optics Express, vol. 15, no. 10, pp. 6183–6189, 2007. View at Publisher · View at Google Scholar
  108. J. S. Sanghera and I. D. Aggarwal, Eds., Infrared Fiber Optics, CRC Press, Boca Raton, Fla, USA, 1998.
  109. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Optics Express, vol. 15, no. 23, pp. 15086–15092, 2007. View at Publisher · View at Google Scholar
  110. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science, vol. 296, no. 5567, pp. 510–513, 2002. View at Publisher · View at Google Scholar
  111. J. Ballato, T. Hawkins, P. Foy et al., “Silicon optical fiber,” Optics Express, vol. 16, no. 23, pp. 18675–18683, 2008. View at Publisher · View at Google Scholar
  112. D. Webb, in Proceedings of the 1st Asia Pacific Optical Fibre Sensors Conference (APOS '08), Chengdu, China, 2008, invited talk.
  113. C. Zhang, K. Carroll, D. J. Webb et al., “Recent progress in polymer optical fibre gratings,” in Proceedings of the 19th International Conference on Optical Fibre Sensors, vol. 7004 of Proceedings of SPIE, April 2008. View at Publisher · View at Google Scholar
  114. J. M. Yu, X. M. Tao, and H. Y. Tam, “Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings,” Optics Letters, vol. 29, no. 2, pp. 156–158, 2004. View at Publisher · View at Google Scholar
  115. X.-M. Tao, J.-M. Yu, and H.-Y. Tam, “Photosensitive polymer optical fibres and gratings,” Transactions of the Institute of Measurement and Control, vol. 29, no. 3-4, pp. 255–270, 2007. View at Publisher · View at Google Scholar
  116. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Optics Communications, vol. 220, no. 4–6, pp. 337–343, 2003. View at Publisher · View at Google Scholar
  117. M. S. Milczeswki, H. J. Kalinowski, J. C. C. Silva, J. A. Simões, J. Canning, and C. Martelli, “Determination of orthodontics forces using optic fibre sensors,” in Proceedings of the 83rd Congress of the European Orthodontics Society (EOS '07), Berlin, Germany, 2007.
  118. C. Jewart, K. P. Chen, B. McMillen et al., “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Optics Letters, vol. 31, no. 15, pp. 2260–2262, 2006. View at Publisher · View at Google Scholar