Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 318038, 11 pages
http://dx.doi.org/10.1155/2012/318038
Research Article

Welding Diagnostics by Means of Particle Swarm Optimization and Feature Selection

1Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain
2Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, and Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK

Received 1 February 2012; Accepted 10 April 2012

Academic Editor: Francesco Baldini

Copyright © 2012 J. Mirapeix et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Wu, M. Ushio, and M. Tanaka, “Analysis of the TIG welding arc behavior,” Computational Materials Science, vol. 7, no. 3, pp. 308–314, 1997. View at Google Scholar · View at Scopus
  2. T. W. Eagar, “Physics of arc welding processes,” in Advanced Joining Technologies, T. H. North, Ed., London, UK, 1990. View at Google Scholar
  3. L. Li, D. J. Brookfield, and W. M. Steen, “Plasma charge sensor for in-process, non-contact monitoring of the laser welding process,” Measurement Science and Technology, vol. 7, no. 4, pp. 615–626, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Lu, Y. M. Zhang, and J. Emmerson, “Sensing of weld pool surface using non-transferred plasma charge sensor,” Measurement Science and Technology, vol. 15, no. 5, pp. 991–999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Groslier, S. Pellerin, F. Valensi, F. Richard, and F. Briand, “Explorative approach of the spectral analysis tools to the detection of welding defects in lap welding,” Nondestructive Testing and Evaluation, vol. 26, no. 1, pp. 13–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Gu and W. W. Duley, “A statistical approach to acoustic monitoring of laser welding,” Journal of Physics D, vol. 29, no. 3, pp. 556–560, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. F. Farson and K. R. Kim, “Generation of optical and acoustic emissions in laser weld plumes,” Journal of Applied Physics, vol. 85, no. 3, pp. 1329–1336, 1999. View at Google Scholar · View at Scopus
  8. A. Cobo, F. Bardin, J. Mirapeix, D. P. Hand, J. D. C. Jones, and J. M. López-Higuera, “Optoelectronic device for non-invasive focal point measurement and control of the laser welding process,” Measurement Science and Technology, vol. 16, no. 3, pp. N1–N6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. O. Connolly, G. J. Beirne, G. M. O'Connor, J. T. Glynn, and A. J. Conneely, “Optical monitoring of laser generated plasma during laser welding,” in Laser Plasma Generation and Diagnostics, vol. 3935 of Proceedings of the SPIE, pp. 132–138, San Jose, Ca, USA, 2000.
  10. G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Transactions of Nonferrous Metals Society of China, vol. 16, no. 3, pp. 522–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Kovacevic, Y. M. Zhang, and S. Ruan, “Sensing and control of weld pool geometry for automated GTA welding,” Journal of Engineering for Industry-Transactions of the ASME, vol. 117, no. 2, pp. 210–222, 1995. View at Google Scholar · View at Scopus
  12. B. A. Chin, N. H. Madsen, and J. S. Goodling, “Infrared thermography for sensing the arc welding process,” Welding Journal, vol. 62, no. 9, 1983. View at Google Scholar · View at Scopus
  13. H. C. Wikle, S. Kottilingam, R. H. Zee, and B. A. Chin, “Infrared sensing techniques for penetration depth control of the submerged arc welding process,” Journal of Materials Processing Technology, vol. 113, no. 1-3, pp. 228–233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ancona, T. Maggipinto, V. Spagnolo, M. Ferrara, and P.M. Lugara, “Optical sensor for real-time weld defect detection,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, M.M. Blouke, J. Canosa, and N. Sampat, Eds., vol. 4669 of Proceedings of the SPIE, p. 217, San Jose, CA, USA, 2002. View at Publisher · View at Google Scholar
  15. D. Bebiano and S. C. A. Alfaro, “A weld defects detection system based on a spectrometer,” Sensors, vol. 9, pp. 2851–2861, 2009. View at Google Scholar
  16. I. S. Kim, J. S. Son, S. H. Lee, and P. K. D. V. Yarlagadda, “Optimal design of neural networks for control in robotic arc welding,” Robotics and Computer-Integrated Manufacturing, vol. 20, no. 1, pp. 57–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Luo, H. Zeng, L. Hu, X. Hu, and Z. Zhou, “Application of artificial neural network in laser welding defect diagnosis,” Journal of Materials Processing Technology, vol. 170, no. 1-2, pp. 403–411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Mirapeix, P. B. García-Allende, A. Cobo, O. M. Conde, and J. M. López-Higuera, “Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks,” NDT and E International, vol. 40, no. 4, pp. 315–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Sforza and D. De Blasiis, “On-line optical monitoring system for arc welding,” NDT and E International, vol. 35, no. 1, pp. 37–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ancona, V. Spagnolo, P. M. Lugarà, and M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process,” Applied Optics, vol. 40, no. 33, pp. 6019–6025, 2001. View at Google Scholar · View at Scopus
  21. J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Measurement Science and Technology, vol. 17, no. 10, article no. 013, pp. 2623–2629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ancona, P. M. Lugarà, F. Ottonelli, and I. M. Catalano, “A sensing torch for on-line monitoring of the gas tungsten arc welding process of steel pipes,” Measurement Science and Technology, vol. 15, no. 12, pp. 2412–2418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” Journal of Physics D, vol. 41, no. 13, Article ID 135202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. B. Garcia-Allende, J. Mirapeix, O. M. Conde, A. Cobo, and J. M. Lopez-Higuera, “Defect detection in arc-welding processes by means of the line-to-continuum method and feature selection,” Sensors, vol. 9, no. 10, pp. 7753–7770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Mirapeix, A. Cobo, J. Fuentes, M. Davila, J. M. Etayo, and J. M. Lopez-Higuera, “Use of the plasma spectrum RMS signal for arc-welding diagnostics,” Sensors, vol. 9, no. 7, pp. 5263–5276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, P. Parente, and P. M. Lugarà, “Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys,” Optics and Lasers in Engineering, vol. 44, no. 12, pp. 1324–1335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Groslier, S. Pellerin, F. Valensi, F. Richard, and F. Briand, “Explorative approach of the spectral analysis tools to the detection of welding defects in lap welding,” Nondestructive Testing and Evaluation, vol. 26, no. 1, pp. 13–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Mirapeix, A. Cobo, D. A. González, and J. M. López-Higuera, “Plasma spectroscopy analysis technique based on optimization algorithms and spectral synthesis for arc-welding quality assurance,” Optics Express, vol. 15, no. 4, pp. 1884–1897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia, 1995.
  30. National Institute for Standards and Technology (NIST) , “atomic spectra database,” http://physics.nist.gov/cgi-bin/AtData/main_asd.
  31. H. R. Griem, Principles of Plasma Spectroscopy, chapter 5, Cambridge University Press, 1997.
  32. A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” Journal of Physics D, vol. 27, no. 2, pp. 268–272, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,” Pattern Recognition Letters, vol. 15, no. 11, pp. 1119–1125, 1994. View at Google Scholar · View at Scopus
  34. P. Sathiya, S. Aravindan, A. N. Haq, and K. Paneerselvam, “Optimization of friction welding parameters using evolutionary computational techniques,” Journal of Materials Processing Technology, vol. 209, no. 5, pp. 2576–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Zhang, L. Kong, W. Liu, J. Chen, and K. Zhou, “Real-time monitoring of laser welding based on multiple sensors,” in Proceedings of the Chinese Control and Decision Conference (CCDC '08), pp. 1746–1748, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: an overview,” Swarm Intelligence, vol. 1, pp. 33–57, 2007. View at Google Scholar
  37. A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Transactions on Information Theory, vol. 14, pp. 55–63, 1968. View at Google Scholar
  39. L. Gomez-Chova, J. Calpe, G. Camps-Valls et al., “Feature Selection of Hyperspectral Data Through Local Correlation and SFFS for Crop Classification,” in IEEE International Symposium on Geoscience and Remote Sensing (IGARSS '03), IEEE Cat. No.03CH37477, pp. 555–557, July 2003. View at Scopus
  40. A. Bhattacharyya, “On a measure of divergence between tow multinomial population,” The Indian Journal of Statistics, vol. 7, pp. 401–406, 1946. View at Google Scholar
  41. K. Fukunaga, Introduction to Statistical Pattern Recognition, M. Kaufmann Academic Press, San Diego, Calif, USA, 1990.
  42. D. Comaniciu, P. Meer, K. Xu, and D. Tyler, “Retrieval performance improvement through low rank corrections,” in Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 50–54, 1999.
  43. http://www.tecnalia.com.