Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 405281, 6 pages
Research Article

Fibre Optic Readout of Microcantilever Arrays for Fast Microorganism Growth Detection

1The School of Physics and The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
2Toronto Western Hospital, UHN, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada M5T 2S8
3Institut Jacques Monod, CNRS-Université Paris Diderot, 75205 Paris Cedex 13, France
4Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland

Received 14 June 2011; Accepted 6 July 2011

Academic Editor: Maria Tenje

Copyright © 2012 N. Maloney et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We present a fibre-optic-based device for the automated readout of microcantilever arrays for fast microorganism growth detection. We determined the ability of our device to track shifts in resonance frequency due to an increase in mass on the cantilever surface or changes in mechanical stiffness. The resonance frequency response of 7 μm thick agarose-functionalised cantilevers was tracked as humidity levels were varied revealing a mass responsivity of ~51±1 pg/Hz. The resonance response of microcantilevers coated with Aspergillus niger (A. niger) spores was monitored for >48 h revealing a growth detection time of >4 h. The growth of mycelium along the cantilevers surface is seen to result in an increase in resonance frequency due to the reinforcement of the cantilever structure. The use of our fibre optic detection technique allows data to be recorded continuously and faster than previously reported.