Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 405281, 6 pages
http://dx.doi.org/10.1155/2012/405281
Research Article

Fibre Optic Readout of Microcantilever Arrays for Fast Microorganism Growth Detection

1The School of Physics and The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
2Toronto Western Hospital, UHN, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada M5T 2S8
3Institut Jacques Monod, CNRS-Université Paris Diderot, 75205 Paris Cedex 13, France
4Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland

Received 14 June 2011; Accepted 6 July 2011

Academic Editor: Maria Tenje

Copyright © 2012 N. Maloney et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. EuropeanPharmacopoeia5.0, “Efficacy of Antimicrobial Preservation,” 2005.
  2. N. Backmann, C. Zahnd, F. Huber et al., “A label-free immunosensor array using single-chain antibody fragments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14587–14592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Braun, N. Backmann, M. Vögtli et al., “Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors,” Biophysical Journal, vol. 90, no. 8, pp. 2970–2977, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhang, H. P. Lang, F. Huber et al., “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotechnology, vol. 1, no. 3, pp. 214–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang and H. F. Ji, “An Anti E. Coli O157:H7 antibody-immobilized microcantilever for the detection of Escherichia coli (E. coli),” Analytical Sciences, vol. 20, no. 4, pp. 585–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotechnology, vol. 2, no. 2, pp. 114–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Ilic, D. Czaplewski, M. Zalalutdinov et al., “Single cell detection with micromechanical oscillators,” Journal of Vacuum Science and Technology B, vol. 19, no. 6, pp. 2825–2828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Applied Physics Letters, vol. 84, no. 11, pp. 1976–1978, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Braun, M. K. Ghatkesar, N. Backmann et al., “Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors,” Nature Nanotechnology, vol. 4, no. 3, pp. 179–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotechnology, vol. 4, no. 7, pp. 445–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli,” Applied and Environmental Microbiology, vol. 71, no. 5, pp. 2626–2631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Y. Gfeller, N. Nugaeva, and M. Hegner, “Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli,” Biosensors and Bioelectronics, vol. 21, no. 3, pp. 528–533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Nugaeva, K. Y. Gfeller, N. Backmann et al., “An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores,” Microscopy and Microanalysis, vol. 13, no. 1, pp. 13–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Nugaeva, K. Y. Gfeller, N. Backmann, H. P. Lang, M. Düggelin, and M. Hegner, “Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection,” Biosensors and Bioelectronics, vol. 21, no. 6, pp. 849–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Applied Physics Letters, vol. 53, no. 12, pp. 1045–1047, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Bietsch, J. Zhang, M. Hegner, H. P. Lang, and C. Gerber, “Rapid functionalization of cantilever array sensors by inkjet printing,” Nanotechnology, vol. 15, no. 8, pp. 873–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Tamayo, D. Ramos, J. Mertens, and M. Calleja, “Effect of the adsorbate stiffness on the resonance response of microcantilever sensors,” Applied Physics Letters, vol. 89, no. 22, Article ID 224104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Ramos, J. Tamayo, J. Mertens, M. Calleja, and A. Zaballos, “Origin of the response of nanomechanical resonators to bacteria adsorption,” Journal of Applied Physics, vol. 100, no. 10, Article ID 106105, 2006. View at Publisher · View at Google Scholar · View at Scopus