Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2012, Article ID 582028, 10 pages
http://dx.doi.org/10.1155/2012/582028
Research Article

Evaluation of a Reduced Cost Active NDVI Sensor for Crop Nutrient Management

1Department of Plant and Soil Sciences, Oklahoma State University, 044 Agricultural Hall, Stillwater, OK 74078, USA
2CIMMYT, Int., Apdo. Postal 6-641, 06600 Mexico City, DF, Mexico

Received 24 July 2012; Accepted 4 December 2012

Academic Editor: Pietro Siciliano

Copyright © 2012 Jared Crain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Girma, S. Holtz, B. Tubaña, J. Solie, and W. Raun, “Nitrogen accumulation in shoots as a function of growth stage of corn and winter wheat,” Journal of Plant Nutrition, vol. 34, no. 2, pp. 165–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. R. Szumigalski and R. C. Van Acker, “Nitrogen yield and land use efficiency in annual sole crops and intercrops,” Agronomy Journal, vol. 98, no. 4, pp. 1030–1040, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. W. R. Raun and G. V. Johnson, “Improving nitrogen use efficiency for cereal production,” Agronomy Journal, vol. 91, no. 3, pp. 357–363, 1999. View at Google Scholar · View at Scopus
  4. V. Smil, “Nitrogen in crop production: an account of global flows,” Global Biogeochemical Cycles, vol. 13, no. 2, pp. 647–662, 1999. View at Google Scholar · View at Scopus
  5. P. Heffer and M. Prud'homme, “World agriculture and fertilizer demand, global fertilizer supply and trade 2007-2008,” in Proceedings of the 33rd IFA Enlarged Council Meeting, Doha, Qatar, 2007.
  6. T. M. Blackmer, J. S. Schepers, and G. E. Varvel, “Light reflectance compared with other nitrogen stress measurements in corn leaves,” Agronomy Journal, vol. 86, no. 6, pp. 934–938, 1994. View at Google Scholar · View at Scopus
  7. M. L. Stone, J. B. Solie, W. R. Raun, R. W. Whitney, S. L. Taylor, and J. D. Ringer, “Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat,” Transactions of the American Society of Agricultural Engineers, vol. 39, no. 5, pp. 1623–1631, 1996. View at Google Scholar · View at Scopus
  8. W. R. Raun, J. B. Solie, G. V. Johnson et al., “In-season prediction of potential grain yield in winter wheat using canopy reflectance,” Agronomy Journal, vol. 93, no. 1, pp. 131–138, 2001. View at Google Scholar · View at Scopus
  9. W. R. Raun, J. B. Solie, M. L. Stone et al., “Optical sensor-based algorithm for crop nitrogen fertilization,” Communications in Soil Science and Plant Analysis, vol. 36, no. 19-20, pp. 2759–2781, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. R. Raun, J. B. Solie, G. V. Johnson et al., “Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application,” Agronomy Journal, vol. 94, no. 4, pp. 815–820, 2002. View at Google Scholar · View at Scopus
  11. G. E. Varvel, J. S. Schepers, and D. D. Francis, “Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters,” Soil Science Society of America Journal, vol. 61, no. 4, pp. 1233–1239, 1997. View at Google Scholar · View at Scopus
  12. E. Zillmann, S. Graeff, J. Link, W. D. Batchelor, and W. Claupein, “Assessment of cereal nitrogen requirements derived by optical on-the-go sensors on heterogeneous soils,” Agronomy Journal, vol. 98, no. 3, pp. 682–690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Li, Y. Miao, F. Zhang et al., “In-season optical sensing improves nitrogen-use efficiency for winter wheat,” Soil Science Society of America Journal, vol. 73, no. 5, pp. 1566–1574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. B. Myneni, “Estimation of global leaf area index and absorbed par using radiative transfer models,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 6, pp. 1380–1393, 1997. View at Google Scholar · View at Scopus
  15. N. A. Quarmby, M. Milnes, T. L. Hindle, and N. Silleos, “The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction,” International Journal of Remote Sensing, vol. 14, no. 2, pp. 199–210, 1993. View at Google Scholar · View at Scopus
  16. S. W. Ritchie, J. J. Hanway, and G. O. Benson, How a Corn Plant Develops, SR-48, Iowa State University Cooperative Extension Service, Ames, Iowa, USA, 1996.
  17. E. C. Large, “Growth stages in cereals, illustration of the Feekes scale,” Plant Pathology, vol. 3, pp. 128–129, 1954. View at Google Scholar
  18. W. R. Raun, J. B. Solie, K. L. Martin et al., “Growth stage, development, and spatial variability in corn evaluated using optical sensor readings,” Journal of Plant Nutrition, vol. 28, no. 1, pp. 173–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. C. Scharf, W. J. Wiebold, and J. A. Lory, “Corn yield response to nitrogen fertilizer timing and deficiency level,” Agronomy Journal, vol. 94, no. 3, pp. 435–441, 2002. View at Google Scholar · View at Scopus
  20. H. G. Lawrence and I. J. Yule, “Estimation of the in-field variation in fertiliser application,” New Zealand Journal of Agricultural Research, vol. 50, no. 1, pp. 25–32, 2007. View at Google Scholar · View at Scopus
  21. J. I. Ortiz-Monasterio and W. Raun, “Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management,” Journal of Agricultural Science, vol. 145, pp. 1–8, 2007. View at Google Scholar