Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2013, Article ID 436492, 6 pages
http://dx.doi.org/10.1155/2013/436492
Research Article

Integrated Channel Selector for Directing Fluid Flow Using Thermoreversible Gelation Controlled by a Digital Mirror Device

1Reserch Center for Allergy and Immunology, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
2Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
3Laboratory of Bioanalytical Chemistry, Tokyo University, 7-3-1 Hongo, Tokyo 113-0033, Japan

Received 6 October 2012; Revised 11 February 2013; Accepted 19 February 2013

Academic Editor: Takahiro Arakawa

Copyright © 2013 Yoshitaka Shirasaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Aoyama, A. Saeki, M. Noguchi et al., “Use of folded micromachined pillar array column with low-dispersion turns for pressure-driven liquid chromatography,” Analytical Chemistry, vol. 82, no. 4, pp. 1420–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Xu, K. Jang, T. Yamashita, Y. Tanaka, K. Mawatari, and T. Kitamori, “Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics,” Analytical and Bioanalytical Chemistry, vol. 402, pp. 99–107, 2012. View at Google Scholar
  3. Y. Song, M. Noguchi, K. Takatsuki et al., “Integration of pillar array columns into a gradient elution system for pressure-driven liquid chromatography,” Analytical Chemistry, vol. 84, pp. 4739–4745, 2012. View at Google Scholar
  4. I. E. Araci and S. R. Quake, “Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves,” Lab on a Chip, vol. 12, pp. 2803–2806, 2012. View at Google Scholar
  5. T. Arakawa, T. Sameshima, Y. Sato et al., “Rapid multi-reagents exchange TIRFM microfluidic system for single biomolecular imaging,” Sensors and Actuators B, vol. 128, no. 1, pp. 218–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Chen, F. Svec, and D. R. Knapp, “Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer,” Lab on a Chip, vol. 8, no. 7, pp. 1198–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nature Biotechnology, vol. 21, no. 10, pp. 1179–1183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Krishnan and D. Erickson, “Optically induced microfluidic reconfiguration,” Lab on a Chip, vol. 12, pp. 613–621, 2012. View at Google Scholar
  9. M. Krishnan, J. Park, and D. Erickson, “Optothermorheological flow manipulation,” Optics Letters, vol. 34, no. 13, pp. 1976–1978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Reichmuth, T. J. Shepodd, and B. J. Kirby, “On-chip high-pressure picoliter injector for pressure-driven flow through porous media,” Analytical Chemistry, vol. 76, no. 17, pp. 5063–5068, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Stoeber, C. M. J. Hu, D. Liepmann, and S. J. Muller, “Passive flow control in microdevices using thermally responsive polymer solutions,” Physics of Fluids, vol. 18, no. 5, Article ID 053103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Takei, M. Nonogi, A. Hibara, T. Kitamori, and H. B. Kim, “Tuning microchannel wettability and fabrication of multiple-step Laplace valves,” Lab on a Chip, vol. 7, no. 5, pp. 596–602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Shoji and K. Kawai, “Flow control methods and devices in micrometer scale channels,” Topics in Current Chemistry, vol. 304, pp. 1–25, 2011. View at Google Scholar
  14. H. Sugino, K. Ozaki, Y. Shirasaki, T. Arakawa, S. Shoji, and T. Funatsu, “On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation,” Lab on a Chip, vol. 9, no. 9, pp. 1254–1260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Shirasaki, J. Tanaka, H. Makazu et al., “On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow,” Analytical Chemistry, vol. 78, no. 3, pp. 695–701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Sugino, T. Arakawa, Y. Nara et al., “Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol-gel transition of thermoreversible gelation polymer,” Lab on a Chip, vol. 10, no. 19, pp. 2559–2565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Y. Lee, Y. Lee, J. E. Kim, T. G. Park, and C. H. Ahn, “A novel pH-sensitive PEG-PPG-PEG copolymer displaying a closed-loop sol-gel-sol transition,” Journal of Materials Chemistry, vol. 19, no. 43, pp. 8198–8201, 2009. View at Publisher · View at Google Scholar · View at Scopus