Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016, Article ID 2435945, 22 pages
http://dx.doi.org/10.1155/2016/2435945
Research Article

Organic Membranes for Selectivity Enhancement of Metal Oxide Gas Sensors

1Laboratory for Gas Sensors, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany
2ams Sensor Solutions Germany GmbH, Gerhard-Kindler-Strasse 8, 72770 Reutlingen, Germany
3Fraunhofer-Institute for Physical Measurement Techniques IPM, Heidenhofstraße 8, 79110 Freiburg, Germany

Received 1 September 2015; Accepted 19 October 2015

Academic Editor: Sheikh Akbar

Copyright © 2016 Thorsten Graunke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Gründler, Chemische Sensoren: Eine Einführung für Naturwissenschaftler und Ingenieure, Springer, Berlin, Germany, 2004.
  2. P. Hauptmann, Sensoren: Prinzipien und Anwendungen, Hanser Publishers, Munich, Germany, 1990.
  3. E. Hering and G. Schönfelder, Sensoren in Wissenschaft und Technik: Funktionsweise und Einsatzgebiete, Vieweg+Teubner, Wiesbaden, Germany, 2012.
  4. C. O. Park and S. A. Akbar, “Ceramics for chemical sensing,” Journal of Materials Science, vol. 38, no. 23, pp. 4611–4637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Akbar, P. Dutta, and C. Lee, “High-temperature ceramic gas sensors: a review,” International Journal of Applied Ceramic Technology, vol. 3, no. 4, pp. 302–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Pijolat, J. P. Viricelle, G. Tournier, and P. Montmeat, “Application of membranes and filtering films for gas sensors improvements,” Thin Solid Films, vol. 490, no. 1, pp. 7–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. B. McKeown and P. M. Budd, “Polymers of intrinsic microporosity,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 2, pp. 781–797, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  8. M. Barboiu, “Constitutional dynameric networks for membranes,” in Ecyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 2, pp. 945–963, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  9. E. Favre, “Polymeric membranes for gas separation,” in Comprehensive Membrane Science and Engineering: Membrane Operations in Molecular Separations, E. Drioli and L. Giorno, Eds., vol. 2, pp. 155–212, Elsevier, Kidlington, UK, 2010. View at Google Scholar
  10. H. Buschatz, B. Dageförde, K. Jakoby, K.-V. Peinemann, and D. Paul, “Hochselektive stofftrennungen mit carriermembranen—stand der entwicklung und erwartungen,” Chemie Ingenieur Technik, vol. 73, no. 4, pp. 297–303, 2001. View at Publisher · View at Google Scholar
  11. A. Raza and B. Ding, “Superhydrophobic biomimetic fibrous membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 2, pp. 984–1021, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  12. M. Ulbricht, “Oberflächenmodifikation,” in Membranen: Grundlagen, Verfahren und Industrielle Anwendungen, K. Ohlrogge and K. Ebert, Eds., chapter 3, pp. 47–75, Wiley-VCH, Weinheim, Germany, 2006. View at Google Scholar
  13. Y. Fang, Z.-K. Xu, and J. Wu, “Surface modification of membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 1, pp. 460–474, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  14. S. Ramakrishna, Z. Ma, and T. Matsuura, Polymer membranes in Biotechnology: Preparation, Functionalization and Application, edited by: S. Ramakrishna, Z. Ma, T. Matsuura, chapter 3-4, Imperial College Press, London, UK, 2011.
  15. H. B. Park, “Gas separation membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 1, pp. 139–171, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  16. B. T. Low, Y. Wang, and T.-S. Chung, “Polymeric membranes for energy applications,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 3, pp. 2066–2102, John Wiley & Sons, Hoboken, Nj, USA, 2066. View at Publisher · View at Google Scholar
  17. R. Rego, N. Caetano, and A. Mendes, “Hydrogen/methane and hydrogen/nitrogen sensor based on the permselectivity of polymeric membranes,” Sensors and Actuators B: Chemical, vol. 111-112, pp. 150–159, 2005. View at Publisher · View at Google Scholar
  18. S. Kitsukawa, H. Nakagawa, K. Fukuda, S. Asakura, S. Takahashi, and T. Shigemori, “Interference elimination for gas sensor by catalyst filters,” Sensors and Actuators B: Chemical, vol. 65, no. 1–3, pp. 120–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Althainz, A. Dahlke, M. Frietsch-Klarhof, J. Goschnick, and H. J. Ache, “Reception tuning of gas-sensor microsystems by selective coatings,” Sensors and Actuators B: Chemical, vol. 25, no. 1–3, pp. 366–369, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Fleischer, S. Kornely, T. Weh, J. Frank, and H. Meixner, “Selective gas detection with high-temperature operated metal oxides using catalytic filters,” Sensors and Actuators B: Chemical, vol. 69, no. 1, pp. 205–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Weh, M. Fleischer, and H. Meixner, “Optimization of physical filtering for selective high temperature H2 sensors,” Sensors and Actuators B: Chemical, vol. 68, no. 1–3, pp. 146–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Cabot, J. Arbiol, A. Cornet, J. R. Morante, F. Chen, and M. Liu, “Mesoporous catalytic filters for semiconductor gas sensors,” Thin Solid Films, vol. 436, no. 1, pp. 64–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. H. Kwon, D. H. Yun, H.-K. Hong et al., “Multi-layered thick-film gas sensor array for selective sensing by catalytic filtering technology,” Sensors and Actuators B: Chemical, vol. 65, no. 1–3, pp. 327–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Vilaseca, J. Coronas, A. Cirera, A. Cornet, J. R. Morante, and J. Santamaría, “Use of zeolite films to improve the selectivity of reactive gas sensors,” Catalysis Today, vol. 82, no. 1–4, pp. 179–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Hagen, A. Dubbe, F. Rettig et al., “Selective impedance based gas sensors for hydrocarbons using ZSM-5 zeolite films with chromium(III)oxide interface,” Sensors and Actuators B: Chemical, vol. 119, no. 2, pp. 441–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Hugon, M. Sauvan, P. Benech, C. Pijolat, and F. Lefebvre, “Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors,” Sensors and Actuators B: Chemical, vol. 67, no. 3, pp. 235–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Sahner, D. Schönauer, P. Kuchinke, and R. Moos, “Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors,” Sensors and Actuators, B: Chemical, vol. 133, no. 2, pp. 502–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Afonja, S. Dungey, R. Binions, I. Parkin, D. Lewis, and D. Williams, “Gas sensing properties of composite tungsten trioxide-zeolite thick films,” ECS Transactions, vol. 16, no. 24, pp. 77–84, 2009. View at Google Scholar
  29. R. Binions, H. Daviesa, A. Afonja, and et al, “Zeolite modified discriminating gas sensors,” Journal of The Electrochemical Society, vol. 156, no. 3, pp. J46–J51, 2009. View at Publisher · View at Google Scholar
  30. R. Binions, A. Afonja, S. Dungey, D. Lewis, I. Parkin, and D. E. Williams, “Zeolite modification. Towards discriminating metal oxide gas sensors,” ECS Transactions, vol. 19, no. 6, pp. 241–250, 2008. View at Publisher · View at Google Scholar
  31. M. Hübner, A. Yuece, G. C. Mondragón Rodríguez, B. Saruhan, N. Barsan, and U. Weimar, “BaTi0,95Rh0,05O3 catalytic filter layer—a promising candidate for the selective detection of CO in the presence of H2,” Procedia Engineering, vol. 5, pp. 107–110, 2010. View at Publisher · View at Google Scholar
  32. S. Ajami, Y. Mortazavi, A. Khodadadi, F. Pourfayaz, and S. Mohajerzadeh, “Highly selective sensor to CH4 in presence of CO and ethanol using LaCoO3 perovskite filter with Pt/SnO2,” Sensors and Actuators B: Chemical, vol. 117, no. 2, pp. 420–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Ryzhikov, M. Labeau, and A. Gaskov, “Al2O3(M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors,” Sensors and Actuators B: Chemical, vol. 109, no. 1, pp. 91–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Hubálek, K. Malysz, J. Prášek et al., “Pt-loaded Al2O3 catalytic filters for screen-printed WO3 sensors highly selective to benzene,” Sensors and Actuators B: Chemical, vol. 101, no. 3, pp. 277–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns, “CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors,” Sensors and Actuators B: Chemical, vol. 65, no. 1–3, pp. 379–381, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Liu, X. Tan, and K. Li, “Inorganic membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 1, pp. 610–638, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  37. C. Yacou, D. Wang, J. Motuzas, X. Zhang, S. Smart, and J. C. D. da Costa, “Thin-film ceramic membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 1, pp. 676–711, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  38. S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, “Asymmetric Matrimid/[Cu3(BTC)2] mixed-matrix membranes for gas separations,” Journal of Membrane Science, vol. 362, no. 1-2, pp. 478–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. S. Tin, T. S. Chung, Y. Liu, R. Wang, S. L. Liu, and K. P. Pramoda, “Effects of cross-linking modification on gas separation performance of Matrimid membranes,” Journal of Membrane Science, vol. 225, no. 1-2, pp. 77–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus Jr., “Gas permeability properties of Matrimid membranes containing the metal-organic framework Cu-BPY-HFS,” Journal of Membrane Science, vol. 313, no. 1-2, pp. 170–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Adams, J. R. Johnson, C. Zhang et al., “Mixed-matrix membranes,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 1, pp. 398–430, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  42. T. Melin and R. Rautenbach, Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, vol. 3, Springer, Berlin, Germany, 2007.
  43. I. Voigt and S. Tudyka, “Keramische membranen und hohlfasern,” in Membranen: Grundlagen, Verfahren und industrielle Anwendungen, K. Ohlrogge and K. Ebert, Eds., chapter 5, pp. 103–146, Wiley, Weinheim, Germany, 2006. View at Google Scholar
  44. K. Ohlrogge, J. Wind, and K.-V. Peinemann, “Verfahren zur trennung von gasen und dämpfen,” in Membranen: Grundlagen, Verfahren und industrielle Anwendungen, K. Ohlrogge and K. Ebert, Eds., chapter 12, pp. 375–428, Wiley, Weinheim, Germany, 2006. View at Google Scholar
  45. X. He, Q. Yu, and M.-B. Hägg, “CO2 capture,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 3, pp. 1560–1588, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  46. H. Lin, L. S. White, K. lokhandwala, and R. W. Baker, “Natural gas purification,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 3, pp. 1644–1668, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  47. D. Rana and T. Matsuura, “Oxygen-nitrogen separation,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 3, pp. 1668–1693, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  48. A. Brunetti, G. Barbieri, and E. Drioli, “Gas separation, applications,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek, V. V. Tarabara, and E. Drioli, Eds., vol. 3, pp. 1886–1915, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  49. Y. Yampolskii and B. Freeman, Membrane Gas Separation, John Wiley & Sons, Chichester, UK, 2010.
  50. R. W. Baker, Membrane Technology and Application, edited by R. W. Baker, John Wiley & Sons, Chichester, UK, 3rd edition, 2012.
  51. Y. Yampolskii, I. Pinnau, and B. Freeman, Material Science of Membranes for Gas and Vapor Separation, edited by Y. Yampolskii, I. Pinnau, and B. Freeman, John Wiley & Sons, Chichester, UK, 2006.
  52. C. A. Scholes, S. E. Kentish, and G. W. Stevens, “The effects of minor components on the gas separation performance of polymetric membranes for carbon capture,” in Membrane Gas Separation, Y. Yampolskii and B. Freeman, Eds., chapter 11, pp. 201–226, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  53. H. E. A. Brüschke, “Pervaporation und dampfpermeation,” in Membranen: Grundlagen, Verfahren und industrielle Anwendungen, K. Ohlrogge and K. Ebert, Eds., chapter 11, pp. 335–374, Wiley, Weinheim, Germany, 2006. View at Google Scholar
  54. A. Jonquières, C. Arnal-Herault, and J. Babin, “Pervaporation,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 3, pp. 1533–1560, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  55. A. Brunetti, P. Bernardo, E. Drioli, and G. Barbieri, “Membrane engineering: progress and potentialities in gas separation,” in Membrane Gas Separation, Y. Yampolskii and B. Freeman, Eds., chapter 14, pp. 281–312, John Wiley & Sons, Chichester, UK, 2010. View at Google Scholar
  56. K. Nagai, “Fundamentals and perspectives for pervoparation,” in Comprehensive Membrane Science and Engineering: Membrane Operations in Molecular Separations, E. Drioli and L. Giorno, Eds., vol. 2, pp. 243–271, Elsevier, Kidlington, UK, 2010. View at Google Scholar
  57. T. Uragami, “Selective membranes for purification and separation of organic liquid mixtures,” in Comprehensive Membrane Science and Engineering: Membrane Operations in Molecular Separations, E. Drioli and L. Giorno, Eds., vol. 2, pp. 273–324, Elsevier, Kidlington, UK, 2010. View at Google Scholar
  58. D. Gorri, A. Urtiaga, and I. Ortiz, “Supported liquid membranes for pervaporation processes,” in Comprehensive Membrane Science and Engineering: Membrane Operations in Molecular Separations, E. Drioli and L. Giorno, Eds., vol. 2, pp. 325–349, Elsevier, Kidlington, UK, 2010. View at Google Scholar
  59. R. W. Baker, Membrane Technology and Applications, edited by: R. W. Baker, chapter 8, John Wiley & Sons, Chichester, UK, 3rd edition, 2012.
  60. H. Domininghaus, P. Elsner, P. Eyerer, and T. Hirth, Kunststoffe: Eigenschaften und Anwendungen, Edited by P. Elsner, P. Eyerer, and T. Hirth, Springer, Heidelberg, Germany, 8th edition, 2012.
  61. W. Kaiser, “Polyolefine,” in Kunststoffchemie für Ingenieure: Von der Synthese bis zur Anwendung, W. Kaiser, Ed., chapter 4, pp. 235–272, Carl Hanser, München, Germany, 3rd edition, 2011. View at Google Scholar
  62. W. Hellerich, G. Harsch, and E. Baur, Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte, edited by W. Hellerich, G. Harsch, and E. Baur, Carl Hanser, München, Germany, 10th edition, 2010.
  63. W. Kaiser, Kunststoffchemie für Ingenieure: Von der Synthese bis zur Anwendung, vol. 3 of edited by W. Kaiser, Carl Hanser, München, Germany, 2011.
  64. H. Domininghaus, P. Elsner, P. Eyerer, and T. Hirth, Kunststoffe: Eigenschaften und Anwendungen, edited by: P. Elsner, P. Eyerer, T. Hirth, Springer, Heidelberg, Germany, 8th edition, 2012.
  65. E. Baur, S. Brinkmann, T. A. Osswald, N. Rudolph, and E. Schmachtenberg, Saechtling Kunststoff Taschenbuch, Edited by H. Saechtling, Carl Hanser, München, Germany, 31st edition, 2013.
  66. W. Hellerich, G. Harsch, and E. Baur, Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte, Edited by W. Hellerich, G. Harsch, and E. Baur, Carl Hanser, München, Germany, 10th edition, 2010.
  67. W. Keim, Kunststoffe: Synthese, Herstellungsverfahren, Apparaturen, Edited by W. Keim, Wiley, Weinheim, Germany, 2006.
  68. J. C. Cañadas, J. A. Diego, J. Sellarès et al., “Comparative study of amorphous and partially crystalline poly(ethylene-2,6-naphthalene dicarboxylate) by TSDC, DEA, DMA and DSC,” Polymer, vol. 41, no. 8, pp. 2899–2905, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. Goodfellow GmbH, 2013, http://www.goodfellow.com/.
  70. Reichelt Chemietechnik GmbH & Co, Thomaplast II Halbzeuge, Reichelt Chemietechnik GmbH & Co, 2012, http://www.rct-online.de/.
  71. P. Meares, “The diffusion of gases through polyvinyl acetate,” Journal of the American Chemical Society, vol. 76, no. 13, pp. 3415–3422, 1954. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Bernstein, Y. Kaufman, and V. Freger, “Membrane characterization,” in Encyclopedia of Membrane Science and Technology, E. M. V. Hoek and V. V. Tarabara, Eds., vol. 2, pp. 1021–1062, John Wiley & Sons, Hoboken, NJ, USA, 2013. View at Google Scholar
  73. Y. M. Volfkovich, A. N. Filippov, and V. S. Bagotsky, Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology, Edited by Y. M. Volfkovich, A. N. Filippov, and V.S. Bagotsky, Springer, London, UK, 2014.
  74. S. Matteucci, Y. Yampolskii, B. D. Fremann, and I. Pinnau, “Transport of gases and vapors in glassy and rubbery polymers,” in Materials Science of Membranes for Gas and Vapor Separation, Y. Yampolskii, I. Pinnau, and B. D. Fremann, Eds., pp. 1–47, John Wiley & Sons, Chichester, UK, 2006. View at Google Scholar
  75. H. Strathmann, Introduction to Membrane Science and Technology, edited by H. Strathmann, Wiley, Weinheim, Germany, 2011.
  76. T. Melin and R. Rautenbach, Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, edited by: T. Melin, R. Rautenbach, Springer, Berlin, Germany, 3rd edition edition, 2007.
  77. J. Kappler, Characterisation of high-performance SnO2 gas sensors for CO detection by in situ techniques [Ph.D. dissertation], Fakultät für Chemie und Pharmazie, Universität Tübingen, Tübingen, Germany, 2001.