Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2016 (2016), Article ID 3632943, 10 pages
http://dx.doi.org/10.1155/2016/3632943
Research Article

Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images

1Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan, Hubei 430074, China
2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Received 25 December 2014; Revised 11 May 2015; Accepted 21 June 2015

Academic Editor: Jonathan C.-W. Chan

Copyright © 2016 Chen Xing et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-based k-nearest-neighbor for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 11, pp. 4099–4109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Huang and L. Zhang, “An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 1, pp. 257–272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Ma, M. M. Crawford, X. Yang, and Y. Guo, “Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2832–2844, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Ma, W. Qiu, J. Zhao, Y. Ma, A. L. Yuille, and Z. Tu, “Robust L2E estimation of transformation for non-rigid registration,” IEEE Transactions on Signal Processing, vol. 63, no. 5, pp. 1115–1129, 2015. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. J. Y. Ma, J. Zhao, Y. Ma, and J. W. Tian, “Non-rigid visible and infrared face registration via regularized gaussian fields criterion,” Pattern Recognition, vol. 48, no. 3, pp. 772–784, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik, “Dimensionality reduction: a comparative review,” 2008, http://www.iai.uni-bonn.de/~jz/dimensionality_reduction_a_comparative_review.pdf.
  7. L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding,” Pattern Recognition, vol. 48, no. 10, pp. 3102–3112, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and M. Qubec, “Greedy layer-wise training of deep networks,” in Advances in Neural Information Processing Systems, vol. 19, pp. 153–160, 2007. View at Google Scholar
  9. C. C. Tan and C. Eswaran, “Reconstruction of handwritten digit images using autoencoder neural networks,” in Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, pp. 465–469, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103, 2008.
  11. A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Neural Information Processing Systems, vol. 25, pp. 1097–1105, 2012. View at Google Scholar
  12. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2735–2742, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. S. Chen, Z. H. Lin, X. Zhao, G. Wang, and Y. F. Gu, “Deep learning-based classification of hyperspectral data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2175–2184, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010. View at Google Scholar · View at Scopus
  17. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323, 2011.
  18. L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning and Neural Networks, D. Saad, Ed., pp. 9–42, Cambridge University Press, Cambridge, UK, 1998. View at Google Scholar
  19. L. Zhang, L. Zhang, D. Tao, and X. Huang, “On combining multiple features for hyperspectral remote sensing image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, pp. 879–893, 2012. View at Publisher · View at Google Scholar · View at Scopus